Enhance the ultrasound learning process in obstetrics and gynecology

CAE Vimedix OB-GYN is an effective tool for learning transabdominal and transvaginal ultrasound. Our manikin-based simulator, featuring an all-new virtual probe for additional remote learning, allows healthcare professionals to quickly acquire the psychomotor and cognitive skills needed to achieve proficiency in ultrasound scanning.

With more than 50 pathologies and self-directed instructional content, Vimedix OB-GYN provides trainees with exposure to, and practice in, realistic obstetrical and gynecological cases they might not normally see—all without risk to patients.

Now available as a software update, the CAE Vimedix 3.3 platform provides 3D/4D scanning and multiplanar reconstruction (MPR) views within obstetrics and gynecology to rule out fetal abnormalities throughout pregnancy—offering far more value than a standard OB-GYN ultrasound.

Differentiating Features

• Optional add-on modules (cardiac, lung, abdominal) that support multiple ultrasound applications on a single common platform
• Self-directed instructional content that makes ultrasound learning easily scalable
• Continuous development of new functionalities and content
• 3D/4D ultrasound with MPR for endovaginal and transvaginal scanning
• Host virtual workshops with multiple features that enable remote users to operate the simulator using web-conferencing
• Ability to customize content and curriculum with custom filters and presets
• Empowers instructors to create scanning exercises and collect learner metrics
• Localization available to support various markets
• VimedixAR application for Microsoft HoloLens 2 allows enhanced teaching and learning via Augmented Reality (AR)

Learn more about CAE Vimedix 3.3 at caehealthcare.com/vimedix.

Your worldwide training partner of choice
Technical Specifications

Standard Equipment
• Female multi-purpose manikin
• Phased array, ultrasonic curvilinear and/or transvaginal transducer(s)
• HP® Omen laptop with wireless mouse
• Cables (power, DVI, ethernet)
• User guide
• Option to add cardiac/abdominal capabilities to the simulator

Specifications, Dimensions
• Catherine female multi-purpose manikin
 • 38 X 18.5 in (96.5 cm X 47 cm)
 • 30 lbs (13.6 kg)

Computer
• 15.94 X 11.01 X 1.06 in (W X D X H)
 • 40.49 X 27.97 X 2.69 cm
• CPU: Intel® Core™ i9-9880H
• Hard drive: 1 TB SSD
• Memory: 16 GB
• Graphics card: NVIDIA® GeForce® RTX 2080 (8GB)
• OS: Microsoft® Windows® 10
• Screen: 17.3 in

External Polhemus Box
• 7 X 6 X 2 in
 • 17.78 X 15.24 X 5.08 cm
• 1.65 lbs (0.62 kg)

Electrical
• Operates at 110/240V 50/60Hz

Ambient Temperature Range
• 41°F – 95°F (5°C – 35°C)

Humidity
• 40 – 80%

Key Features
• Dual system featuring two learning options, a manikin and virtual probe, that replicates real-time visual, physical and ergonomic attributes of ultrasound scanning
 – Palpable thoracic and pelvic bony landmarks, combined with motion tracking system, allow 6 degrees of freedom to align physical manikin with virtual anatomy in Vimedix software
• Supports Transabdominal and Transvaginal ultrasound scanning on a single platform
• Simulation of obstetric and gynecologic images and functions
 – 2D/3D/4D, Biplane, M-mode views
 – MPR
 – Adjustable image settings (depth, viewing angle, gain, contrast)
 – Ability to complete measurements, including length/diameter, circumference and area
 – 20-week obstetric report function, with automated calculations and drop-down menus consistent with typical obstetric scanning protocols, and workflow
 – Zoom function for ultrasound images
 – Ability to freeze image and scroll through frames
 – Ability to add noise on ultrasound view to alter image quality and level of viewing difficulty
 – More than 50 available pathologies in the first and second trimesters of pregnancy, with the option to hide pathology names (Stealth Mode)
 – Gynecological pathologies available
• Interactive remote education tools using any web conference application
• 2D AR showing animated anatomy with labeled structures that can be moved and rotated to learn structure identification and spatial orientation
• Create and publish comprehensive activities to enable self-moderated learning
• Ability to enable/disable anatomical structures on 2D AR display, and bone, lung and abdominal artifacts on ultrasound display
• Ability to switch between split screen and single screen views of 2D AR display, and ultrasound display
• Self-directed instructional content modules that allow learners to practice in the absence of a live instructor:
 – Basic probe movements
 – Optimization of image settings
 – Obtaining views using Target Cut Planes (TCPs)
 – Echocardiographic measurements
• TCP exercises that provide reference guides and images to aid learners in identifying the correct probe positioning/orientation to obtain specific ultrasound views
• Quantifiable kinematic metrics that can be recorded during TCP exercises to assess and monitor user performance
• Ability to capture and export images, videos, reports and metrics
• Ability to connect the simulator to a second display, with the option to either extend or mirror the Vimedix interface
• Access to CAE Healthcare’s ICCU e-Learning curricula for critical care ultrasound and guided procedures

© 2021 CAE Healthcare 12/13/2021