CAEAria
User Guide

Your worldwide training partner of choice
CONTENTS

Cautions and Warnings .. 1

- Electrical Safety ... 1
- Product Use Warnings ... 2
 - Manikin, Tablet and Wireless Modules 2
 - Latex ... 2
 - Fluids System .. 3
 - Skin .. 3
- Simulator Batteries ... 3
 - Battery Replacement ... 3
 - Battery Safety Information ... 3
- Precautions for Handling .. 3
- Potential Health Effects ... 5
- Safety Measures .. 5
- Transport Information ... 5

Specifications .. 7

- Size and Weight ... 8
- Ambient Temperature Range .. 8
- Battery .. 8
- Power ... 9
- Communications ... 9
- Electrotherapy .. 10

Meet Aria ... 11

- Simulator Configurations .. 11

Equipment Overview ... 15

- Standard Equipment .. 15
 - Full Body Wireless Manikin ... 15
 - Male and Female Genitalia .. 15
 - Male and Female Wigs .. 15
 - Gown .. 16
 - Accessories Kit ... 16
 - NIBP Pulse Arm ... 16
 - Pediatric BP Cuff T-Adapter .. 16
- Live and Advanced Configurations 17
- CAE Maestro Software .. 17
Contents

Surface Go 2 Tablet ... 18
Tablet Carrying Case ... 18
CAE StethoSym ... 19
CAE SymEyes ... 19
CAE SymDefib ... 19
SpO2 Finger Probe ... 20
Optional Equipment .. 20

Setup ... 21
Unpacking the Manikin ... 21
Setup Preparation ... 22
Setup Procedure ... 22
Step 1: Place the Aria Manikin in the Work Area 23
Step 2: Connect the Manikin Power Cord to Aria 24
Step 3: Connect the Manikin Power Cord to a Power Source 24
Step 4: Charge the Instructor Tablet ... 25
Step 5: Charge the Accessories ... 25
Step 6: Power On the Aria Manikin ... 26
Step 7: Power on the Instructor Tablet .. 28
Step 9: Modify the Blood Pressure Cuff 29
Step 10: Prime the Fluids Systems ... 30

Aria Features .. 33
Physiological Features .. 33
Articulation ... 33
Neurological System ... 33
Respiratory System ... 34
Cardiovascular System .. 35
Gastrointestinal System .. 36
Genitourinary System ... 36
Medication Administration ... 36
Simulated Clinical Experiences .. 37
Scenarios ... 38
System Controls ... 38
Application Software .. 38

Using Aria .. 39
Neurologic System ... 39
Neurologic System Controls .. 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>41</td>
</tr>
<tr>
<td>Respiratory System</td>
<td>43</td>
</tr>
<tr>
<td>Respiratory System Controls</td>
<td>43</td>
</tr>
<tr>
<td>Airway Management</td>
<td>46</td>
</tr>
<tr>
<td>Intubation</td>
<td>46</td>
</tr>
<tr>
<td>Right Mainstem Intubation</td>
<td>48</td>
</tr>
<tr>
<td>Laryngospasm</td>
<td>49</td>
</tr>
<tr>
<td>Bronchial Resistance</td>
<td>49</td>
</tr>
<tr>
<td>Gastric Distention</td>
<td>49</td>
</tr>
<tr>
<td>Tracheostomy Tube Placement and Suctioning</td>
<td>50</td>
</tr>
<tr>
<td>Chest Excursion</td>
<td>51</td>
</tr>
<tr>
<td>Ventilation</td>
<td>52</td>
</tr>
<tr>
<td>Cricothyrotomy</td>
<td>53</td>
</tr>
<tr>
<td>Pneumothorax (Needle Decompression)</td>
<td>55</td>
</tr>
<tr>
<td>Chest Tube</td>
<td>55</td>
</tr>
<tr>
<td>Cardiovascular System</td>
<td>56</td>
</tr>
<tr>
<td>Cardiovascular System Controls</td>
<td>57</td>
</tr>
<tr>
<td>Pulses</td>
<td>58</td>
</tr>
<tr>
<td>IV Administration</td>
<td>59</td>
</tr>
<tr>
<td>IV Cannulation</td>
<td>61</td>
</tr>
<tr>
<td>Intramuscular (IM) Subcutaneous (SQ) Injection</td>
<td>62</td>
</tr>
<tr>
<td>Intraosseous (IO) Cannulation and Administration</td>
<td>63</td>
</tr>
<tr>
<td>Chest Compressions</td>
<td>64</td>
</tr>
<tr>
<td>ECG</td>
<td>64</td>
</tr>
<tr>
<td>Defibrillation, Cardioversion, and Pacing</td>
<td>66</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>71</td>
</tr>
<tr>
<td>Blood Glucose Fingers</td>
<td>73</td>
</tr>
<tr>
<td>SpO2 Finger Probe</td>
<td>76</td>
</tr>
<tr>
<td>Gastrointestinal System</td>
<td>77</td>
</tr>
<tr>
<td>Genitourinary System</td>
<td>77</td>
</tr>
<tr>
<td>Urinary Catheterization</td>
<td>78</td>
</tr>
<tr>
<td>Changing the Simulator’s Genitalia</td>
<td>78</td>
</tr>
<tr>
<td>Sounds</td>
<td>80</td>
</tr>
<tr>
<td>Auscultated Sounds</td>
<td>80</td>
</tr>
<tr>
<td>Speech</td>
<td>80</td>
</tr>
<tr>
<td>Using the StethoSym</td>
<td>81</td>
</tr>
</tbody>
</table>
Care and Maintenance

General Simulator Care

- Step 1: Clean the Manikin
- Step 2: Flush and Drain the Left Arm IV Sites
- Step 3: Maintain IM Injection Site
- Step 4: Flush and Drain the Jugular, Tibial IO and Gastrostomy Sites
- Step 5: Flush and Drain the Urinary System
- Step 6: Flush and Drain the Chest Tube
- Step 7: Flush and Drain the Bleeding System
- Step 8: Power off the Instructor Tablet
- Step 9: Power Off the Manikin

Maintenance

- Airway Inspection
- Storage
- Short-Term Storage
- Long-Term Storage

Appendix A - Recommended Clinical Supplies
CAUTIONS AND WARNINGS

Please read and understand these cautions and warnings before you begin using the Product.

Important: Do not use the product in any manner other than specified, as safety features designed for protection may be impaired.

Electrical Safety

• This product must be connected to an electrical outlet that is properly grounded. Take precaution to ground or polarize correctly.

• Always use the supplied power cords. Do not substitute.

• Always use the supplied power adapter to run the simulator from AC.

• Operate the system from a power source with the following ratings.

<table>
<thead>
<tr>
<th>Power</th>
<th>Frequency (cycles per second)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 VAC</td>
<td>50/60 hertz</td>
<td>North America, Japan</td>
</tr>
<tr>
<td>220 VAC</td>
<td>50/60 hertz</td>
<td>Europe</td>
</tr>
</tbody>
</table>

• Do not allow excess fluids to flow on or into electronic parts.

• Do not attempt to disassemble the simulator or service any of the electrical components without receiving instructions from Customer Service.

• Do not operate the manikin in rain. Apply water to the manikin only in accordance with the supported clinical procedures explained in this guide.
Cautions and Warnings

Product Use Warnings

Manikin, Tablet and Wireless Modules

• Make sure the manikin is set up on a stable, sturdy work surface that will not collapse and cause injury to users.

• Operate the manikin in ambient temperatures below 104°F (40°C).

 Note: This only applies when using the manikin without the tablet where CAEMaestro software is installed. For information about temperature ranges for the tablet, see *Ambient Temperature Range* in the *Specifications* section of this User Guide.

• Do not disassemble factory-assembled parts of the manikin without receiving instructions from Customer Service.

• Clean the manikin with water and a light soap solution only. Do not use chemical solvents. Do not immerse the manikin in liquid or use abundant liquid to wash the manikin. For more information, see the *Care and Maintenance* section.

• Do not place foreign substances into the airway, with the exception of small amounts of approved lubricant. Only perform invasive procedures supported by the Product as described in the applicable sections of the User Guide.

• Do not insert any materials into the manikin except the equipment or probes supplied.

• Do not lift the manikin by its limbs. Support the head and lift it from the torso. If necessary, have another person help you lift and move the manikin using a patient transfer device such as a patient transfer board, when available.

• Keep the manikin plugged in between training sessions due to a slow drain of the battery that occurs.

• Under normal circumstances, unplugging the external DC power used for powering and charging the manikin is not necessary because the charging stops when the battery is full. A topping charge is only applied when the battery voltage drops to a certain level.

• Do not spill fluids over the manikin’s chest, abdomen, or inside the manikin’s torso. This could damage the system and may also present a possible hazard for the operator. Special attention should be taken while using the various fluid features.

• Do not use the manikin or equipment in locations where children are likely to be present.

Latex

The IV cannulation tubing in the left IV arm contains latex. The user may come into contact when changing out the IV tubing during routine maintenance. Users with latex sensitivity should use caution.
Cautions and Warnings

Fluids System

For manikins such as Aria that are equipped with fluid systems:

- Do not use theatrical blood in the bleeding system.
- Only use small amounts of food coloring for urine or blood and flush the system when training is complete.
- Do not modify the reservoirs or any assembly component.
- Always protect your eyes, skin, and clothing against accidental exposure.

Skin

- Avoid contact with sharp surfaces and excessive pulling on skin.

Simulator Batteries

- Manikins and tablets use lithium batteries that all have special handling requirements to avoid hazardous situations.
- Batteries can be charged while the manikin is between 35°F (4°C) and 95°F (35°C).
- Do not store, use or charge the battery inside of an automobile as temperatures can exceed 176°F (80°C).

Battery Replacement

- If the simulator battery power diminishes significantly or needs to be replaced, contact Customer Service to replace the battery.
- Before disposing of a simulator battery, apply vinyl tape to its positive (+) and negative (-) terminals to avoid short circuits.
- Dispose of or recycle batteries responsibly.

Battery Safety Information

For information about battery specifications, see the Specifications section of this user guide.

Important: Refer to the battery manufacturer’s Safety Data Sheet (SDS) for complete safety instructions and handling information.

Precautions for Handling

Hazards are associated with the contents of the cell or battery. Under recommended use conditions, the electrode materials and liquid electrolyte are non-reactive, as long as the cell or battery integrity remains, and the seals remain intact.
Cautions and Warnings

Potential exposure should not exist unless the cell or battery:

- leaks,
- is exposed to high temperatures,
- is mechanically, electrically or physically abused/damaged.

If the cell or battery is compromised and starts to leak, based upon the battery ingredients, the contents are classified as hazardous. In general, if liquid leaks from the battery or foul odor is detected, DO NOT use the battery and keep it away from heat or flame.

- Avoid short circuiting the battery. Do not store with coins, screws or other similar objects.
- Do not immerse in water.
- Do not disassemble or deform the battery.
- Do not expose to, or dispose of the battery in fire.
- Avoid excessive physical shock or vibration.
- Keep out of the reach of children.
- For rechargeable batteries, the battery must be charged in an approved charger.
- Never use a modified or damaged charger.
- Store in a cool, dry, and well-ventilated area.
- Never use a battery that has been damaged or deformed.
- Do not short-circuit the positive (+) and negative (-) terminals.
- Do not place the battery in a device with the positive (+) and negative (-) terminals in the wrong positions.
- Do not solder a battery directly.
Potential Health Effects

- **Acute (short term):** In the event that the cell or pack ruptures, the electrolyte solution contained within the cell will corrode and can cause burns to skin and eyes.

- **Inhalation:** Inhaling materials from a sealed cell is not an expected route of exposure. Vapors or mists from a ruptured cell can cause respiratory irritation.

- **Ingestion:** Swallowing materials from a sealed cell is not an expected route of exposure. Swallowing the contents of an open cell can cause serious chemical burns to mouth, esophagus, and gastrointestinal tract.

- **Skin:** Contact between the cell and skin will not cause any harm. Skin contact with the contents of an open cell can cause severe irritation or burns to the skin.

- **Eye:** Contact between the cell and the eye will not cause any harm. Eye contact with the contents of an open cell can cause severe irritation or burns to the eye.

- **Interactions with other chemicals:** Immersion in high conductivity liquids can corrode or breach the cell or battery enclosure. The electrolyte solution inside of the cells can react with alkaline (basic) materials and present a flammability hazard.

Safety Measures

Review the precautions for handling before replacing a battery utilizing guidance from CAE.

Should exposure to hazardous battery components occur, or in the event of a fire, follow all local first aid measures and safety protocols.

Transport Information

CAE complies with the most current International Air Transport Association (IATA) Dangerous Goods Regulations when transporting and shipping Li-ion batteries. The following terms are defined as follows:

- **Consignement** - Equivalent to the term "shipment," meaning one or more packages of hazardous materials accepted from one shipper at one time and at one address, receipted in one lot, and moving to one consignee at one destination address.

- **Equipment** - The device or apparatus for which the lithium cells or batteries will provide electrical power for its operation.

It is the shipper's responsibility to ensure that the consignment is packed in compliance to the latest edition of the applicable regulations. Regulations require appropriate training for shipping dangerous goods. Shipping regulations and requirements may vary depending upon:

- Wattage of the battery.

- Whether the battery is shipped independent of, contained within, or packed with the equipment.
Cautions and Warnings

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batteries Shipped Independent of the Manikin</td>
<td>Batteries contained in or packed with the Manikin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN No.</th>
<th>UN Shipping Name:</th>
<th>Transport Hazard Class:</th>
<th>Required Documentation:</th>
<th>Labeling:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3480</td>
<td>3481</td>
<td>9</td>
<td>Dangerous Goods Declarations must be completed.</td>
<td></td>
</tr>
</tbody>
</table>

UN No.: 3480

UN No.: 3481

UN Shipping Name: Lithium-ion Batteries

Transport Hazard Class: 9

Required Documentation: Dangerous Goods Declarations must be completed.

Labeling: ![Safety Symbol](image)
SPECIFICATIONS

All hardware and software needed for operating the simulator are provided with the shipment.
Specifications

Size and Weight

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Size</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manikin/Simulator</td>
<td>48" H x 15" W x 8" D</td>
<td>50 lbs (22.7 kg)</td>
</tr>
<tr>
<td></td>
<td>(121.92 cm x 38 cm x 20 cm)</td>
<td></td>
</tr>
<tr>
<td>Shipping Container</td>
<td>64" H x 40 W x 32" D</td>
<td>200 lbs (90.7 kg)</td>
</tr>
<tr>
<td></td>
<td>(162.56 cm x 101.6 cm x 81.28 cm)</td>
<td></td>
</tr>
<tr>
<td>Tablet</td>
<td>Surface Go 2</td>
<td>Surface Go 2</td>
</tr>
<tr>
<td></td>
<td>9.65" x 6.9" x 0.33"</td>
<td>1.2 lb (544 g)</td>
</tr>
<tr>
<td></td>
<td>(24.5 cm x 17.5 cm x .83 cm)</td>
<td></td>
</tr>
</tbody>
</table>

Ambient Temperature Range

<table>
<thead>
<tr>
<th>Item</th>
<th>Operation</th>
<th>Storage</th>
<th>Relative Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manikin/Simulator</td>
<td>Wall source: 32°F to 104°F (0°C to 40°C)</td>
<td>40°F to 122°F (4°C to 50°C)</td>
<td>0% to 90% non-condensing</td>
</tr>
<tr>
<td></td>
<td>Note: Battery will not be charging when temperature exceeds 86°F (30°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battery source: 32°F to 104°F (0°C to 40°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tablet</td>
<td>50°F to 95°F (10°C to 35°C)</td>
<td>-13°F to 113°F (-24°C to 45°C)</td>
<td>0% to 90% non-condensing</td>
</tr>
</tbody>
</table>

Battery

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial product name</td>
<td>RRC2054-2</td>
</tr>
<tr>
<td>Use of the substance/preparation</td>
<td>Lithium-ion (Li-ion) battery</td>
</tr>
<tr>
<td>Additional information</td>
<td>Battery-System: Lithium-ion</td>
</tr>
<tr>
<td></td>
<td>Nominal Voltage: 14.4 V</td>
</tr>
<tr>
<td></td>
<td>Nominal Capacity per battery: 6.90 Ah</td>
</tr>
</tbody>
</table>
Power

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Adapter</td>
<td>• AC Voltage Input: 85 - 264 VAC
• Nominal DC Output: 20 V
• Maximum DC Current Output: 8 A
• Nominal Power (Watts): 160 W
• Batteries Limited Charging Current: 4 A</td>
</tr>
<tr>
<td>Manikin/ Simulator</td>
<td>• Internal Batteries (14.4 V x 2)
• Charger DC Output: 19.5 V
• Charger Maximum Current Output: 8 A
• Charger Typical Current Output: 5.5 A
• Batteries Nominal DC Output: 14.4 V
• Batteries Minimum DC Output: 12.5 V
• Batteries Maximum Current Output: 12 A
• Batteries Typical Current Output: 5.5 A
• Run Time: 4+ hours (typical with fully charged battery)
• Both batteries discharge together at the same rate</td>
</tr>
<tr>
<td>StethoSym</td>
<td>• Run Time: 2 hr 45 min while constantly reading a RFID tag and playing audio; 4 hours when ON and receiving signal (Sleep Mode)
• Recharge time: 50 minutes</td>
</tr>
<tr>
<td>SymDefib</td>
<td>• Run Time: 17 hours (with Pads not on Manikin)
• 2-3 hours (with Pads on Manikin)</td>
</tr>
<tr>
<td>Tablet</td>
<td>• Power Adapter AC Input: 100-240 VAC, 50/60 Hz, 11 W (34 W charging)
• Power Adapter DC Output: 15 V
• Power Adapter Power Output: 24 W
• Power Adapter DC Current Output: 1.6 A
• Battery Typical Output Voltage: 7.66 V
• Battery Capacity: 26.81 W hours
• Run Time: 5 hours (typical)
• Recharge Time: (4 hours (typical - while in use)</td>
</tr>
</tbody>
</table>

Communications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulator Network, Instructor Tablet, Patient Monitor</td>
<td>• Wireless: IEEE 802.11 g
• Security: WPA2
• Bands Available: 2.4 GHz and 5.0 GHz</td>
</tr>
<tr>
<td>WiFi Modules - StethoSym, SymDefib</td>
<td>• Wireless: IEEE 802.15.4 WPAN, Personal Area Network</td>
</tr>
</tbody>
</table>
Electrotherapy

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defibrillation</td>
<td>• 20 to 200 Joules (Monophasic, Biphasic)</td>
</tr>
<tr>
<td>Pacing</td>
<td>• 20 mA to 180 mA</td>
</tr>
</tbody>
</table>
MEET ARIA

CAE Aria™ represents a seven-year old child and offers a wide range of pediatric training scenarios. CAE Aria's features allow for realistic training in emergency pediatric care. A wireless and tetherless patient simulator, CAE Aria helps future and current healthcare professionals practice the skills needed to build safety proficiency and expertise.

The simulator is available in (2) two configurations: Live and Advanced. Our CAE Maestro™ software (tablet included) is pre-programmed for each configuration to allow facilitators to control and monitor the simulator and create Simulated Clinical Experiences (SCEs). Its flexibility and ease of use allows for a versatile and dynamic training experience that can be tailored to meet your needs and capabilities.

For CAE Maestro™ and Patient Monitor information and instructions, see the Maestro for Aria user guide.

Simulator Configurations

The simulator is available in two configurations: Live and Advanced.
Configuration

<table>
<thead>
<tr>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live</td>
</tr>
<tr>
<td>• Realistic articulated wireless manikin</td>
</tr>
<tr>
<td>• Internal battery</td>
</tr>
<tr>
<td>• Software compatible instructor tablet with case</td>
</tr>
<tr>
<td>• Wireless facilitator control</td>
</tr>
<tr>
<td>• CAE Maestro™ instructor-driven software</td>
</tr>
<tr>
<td>• Emulated patient monitor software</td>
</tr>
<tr>
<td>• Ten Simulated Clinical Experiences (SCES) - Manual mode</td>
</tr>
<tr>
<td>• SymEyes</td>
</tr>
<tr>
<td>• Scripted, wireless male and female speech and vocal sounds</td>
</tr>
<tr>
<td>• Two-way VOIP communication</td>
</tr>
<tr>
<td>• Stiff neck</td>
</tr>
<tr>
<td>• Head tilt/Chin lift/Jaw thrust</td>
</tr>
<tr>
<td>• Spontaneous chest excursion</td>
</tr>
<tr>
<td>• Retrograde and fiberoptic intubation</td>
</tr>
<tr>
<td>• Right mainstem intubation with detection</td>
</tr>
<tr>
<td>• Esophageal intubation with gastric distension</td>
</tr>
<tr>
<td>• Surgical/Needle cricothyrotomy</td>
</tr>
<tr>
<td>• Tracheostomy</td>
</tr>
<tr>
<td>• Airway adjuncts placement</td>
</tr>
<tr>
<td>• Manual ventilation (BVM)</td>
</tr>
<tr>
<td>• Trantracheal Jet Ventilation</td>
</tr>
<tr>
<td>• Nasopharyngeal suctioning (no fluids)</td>
</tr>
<tr>
<td>• Bronchial occlusion</td>
</tr>
<tr>
<td>• Ventilation detection</td>
</tr>
<tr>
<td>• Simulated pulse oximeter</td>
</tr>
<tr>
<td>• StethoSym</td>
</tr>
<tr>
<td>• Audible breath sounds</td>
</tr>
<tr>
<td>• Auscultation of lung, heart and bowel sounds</td>
</tr>
<tr>
<td>• Manual right NIBP arm with Korotkoff sounds</td>
</tr>
<tr>
<td>• Chest compressions with detection and advanced CPR metrics</td>
</tr>
<tr>
<td>• Bilateral carotid, brachial, radial and femoral pulses</td>
</tr>
<tr>
<td>• Variable pulse strength</td>
</tr>
<tr>
<td>• Library of cardiac rhythms</td>
</tr>
<tr>
<td>• 4-lead ECG</td>
</tr>
<tr>
<td>• Commercial ECG device compatibility</td>
</tr>
<tr>
<td>• Software-based 12-lead ECG</td>
</tr>
</tbody>
</table>
Meet Aria

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Components</th>
</tr>
</thead>
</table>
| **Live** | • Defibrillation, cardioversion and pacing via software
• Fingerstick blood glucose
• Orogastric/Nasogastric tube insertion (no fluids)
• Gastrostomy tube with fluids
• Interchangeable genitalia
• Urinary catheterization with fluids
• Suppository administration
• Preported IV sites at right jugular and left dorsum of hand
• Unilateral IV cannulation left arm at antecubital site
• Left humeral (no fluids) and left tibial IO access (fluids)
• Left humeral and left thigh IM access
• Software-based drug administration
• Unilateral chest tube placement insertion for care and maintenance
• Unilateral needle decompression with automatic detection |
| **Advanced** | • Live features
• Pain response via Sternal Rub
• Seizures
• Tongue swelling
• Laryngospasms
• Pharyngeal swelling
• Substernal retractions
• Variable chest compliance and bronchial resistance
• SymDefib
• Commercial Defibrillator Compatible
• Cyanosis
• Capillary refill
• Bilateral Popliteal and Dorsalis Pedis pulses |
| **Aria Options (with Live or Advanced)** | • SymDefib for commercial defibrillator compatibility
• External bleeding module for chest tube drainage and bleeding moulage
• Simulated Patient Monitor
• CAE Maestro Physiology
• Additional standalone CAE Maestro licenses
• CAE LearningSpace™ |
EQUIPMENT OVERVIEW

The manikin includes standard equipment based on its configuration (Live or Advanced).

Optional equipment is available to enhance learning scenarios. For more information, see Simulator Configurations in this user guide.

Standard Equipment

CAE Aria comes with standard equipment for each configuration.

Full Body Wireless Manikin

CAE Aria supports the standard healthcare requirements for pediatric patients, from assessment to performing basic clinical skills. Depending on the configuration you purchased, the manikin may include advanced features and capabilities.

Male and Female Genitalia

The Aria pediatric manikin features interchangeable male and female genitalia.

Male and Female Wigs

All Aria configurations come with interchangeable male and female wigs.
Gown

A gown is provided for the manikin to enhance the reality of the simulation.

Accessories Kit

An accessories kit is provided which includes the manikin's gown, male and female wigs, male and female genitalia, etc. with various replacement parts.

NIBP Pulse Arm

The non-invasive blood pressure and pulse arm allows users to perform blood pressure readings using a modified blood pressure cuff, palpate radial and brachial pulses, and auscultate Korotkoff sounds using the CAE StethoSym.

Pediatric BP Cuff T-Adapter

A blood pressure cuff T-adapter is included with the Live and Advanced configurations, which can be attached to a clinical blood pressure cuff. Blood pressure readings can then be taken on the manikin using palpation or auscultation.
Live and Advanced Configurations

Live and Advanced configurations come with the equipment listed in the following table.

<table>
<thead>
<tr>
<th>Live and Advanced Configuration Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Body Pediatric Manikin with power cord</td>
</tr>
<tr>
<td>CAE SymEyes</td>
</tr>
<tr>
<td>Humeral IO/IM pad, Tibial IO pad, Thigh IM/SQ pad</td>
</tr>
<tr>
<td>Urinary Module Assembly, Filling Tool</td>
</tr>
<tr>
<td>Male and Female Genitalia</td>
</tr>
<tr>
<td>Male and Female Wigs</td>
</tr>
<tr>
<td>Patient Gown</td>
</tr>
<tr>
<td>Accessories Kit</td>
</tr>
<tr>
<td>CAE SymDefib (Advanced configuration only; Option for Live configuration)</td>
</tr>
<tr>
<td>CAE StethoSym</td>
</tr>
<tr>
<td>Manual Right NIBP Arm with Korotkoff sounds</td>
</tr>
<tr>
<td>SpO₂ Finger Probe</td>
</tr>
<tr>
<td>Pediatric BP Cuff T-adapter</td>
</tr>
<tr>
<td>Instructor Tablet with CAE Maestro software</td>
</tr>
</tbody>
</table>

CAE Maestro Software

CAE Maestro™ software allows facilitators to control and monitor CAE patient simulators and is offered with Live and Advanced Aria configurations only. Maestro allows you to run simulations “on
the fly” in Manual or Modeled mode, or you can run preconfigured Simulated Clinical Experiences (SCEs) in Manual mode. See the Maestro for Aria user guide for more information.

Surface Go 2 Tablet

The Surface Go 2 provides the capabilities of a laptop in an ultra-portable tablet and comes with the Live and Advanced configurations. This mobile workstation features a Windows 10 Pro operating system, a 10.5 in (26.7 cm) touchscreen, and up to 11 hours battery life.

The Surface Go tablet comes equipped with pre-installed CAE Maestro instructor software to control the manikin's physiological activity during simulations.

Tablet Carrying Case

The Surface Go 2 tablet carrying case is a way to store and protect the tablet. With an ergonomic design, users can operate their tablet with ease and comfort.
CAE StethoSym

The CAE StethoSym™ assembly attaches to a stethoscope and pairs with the manikin via IEEE 802.15.4 protocol. This device allows users to auscultate heart, lung, bowel, and Korotkoff sounds emitted. One StethoSym assembly is included with the Live and Advanced manikin configurations.

Note: Stethoscope not included with StethoSym assembly.

CAE SymEyes

The Aria configurations are equipped with software controlled CAE SymEyes™.

The SymEyes feature includes realistic blinking, eye panning and light-reactive pupils. Additional conditions can be selected to be displayed in the eyes, such as jaundice and hemorrhage.

CAE SymDefib

The CAE SymDefib™ box connects with a real defibrillator monitor. This allows for use of real electrical therapy for defibrillation, cardioversion, and pacing. One SymDefib is included with the Advanced manikin configuration. The SymDefib can be added to the Live configuration.
SpO₂ Finger Probe

The SpO₂ Finger Probe measures fingertip pulse oximeter and blood oxygen saturation with pulse rate measurements (software controlled). This accessory is available with the Live and Advanced configurations.

Optional Equipment

To enhance the simulation experience, the Live and Advanced configurations offer optional and additional equipment is available for purchase.

<table>
<thead>
<tr>
<th>Optional Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE SymDefib (Live configuration only; included with Advanced configuration)</td>
</tr>
<tr>
<td>External Bleeding Module</td>
</tr>
<tr>
<td>Simulated Patient Monitor (CAE Maestro software controlled)</td>
</tr>
<tr>
<td>Physiological Model (CAE Maestro software controlled)</td>
</tr>
<tr>
<td>Additional Standalone CAE Maestro software licenses</td>
</tr>
<tr>
<td>CAE LearningSpace™</td>
</tr>
</tbody>
</table>
 SETUP

This section provides instructions and guidelines to unpack, charge and turn on the manikin. It also provides instructions on how to charge and power on the Instructor tablet, StethoSym, and SymDefib.

Unpacking the Manikin

The manikin comes in a custom-designed container that provides proper placement for all parts and accessories.

Follow the guidelines below when opening your shipment:

• Exercise extreme caution when using sharp objects, such as a box cutter. A damaged container can lead to improper storage of the manikin, potentially damaging skin, body parts, and accessories.

• Reserve a space approximately 3 ft by 5 ft (91.44 cm by 152 cm) to store the shipping container before and after use. For more information, see the Care and Maintenance section of this user guide.

• Read and understand the Cautions and Warnings located in the beginning of this user guide.

• Follow the sequence of the steps carefully. Complete all steps in order.

• Do not power on any components until instructed in the text.

• Verify the content of each item in the container against the shipping paperwork to ensure you received the correct product and parts.

• Keep original shipping materials, including boxes and foam. Warranty and repair items must be returned and shipped in their original packaging.
Setup Preparation

To ensure that the manikin is ready for setup and prevent damage to your simulator, it is important to complete the preparation steps as instructed.

Follow the guidelines below before you begin the setup procedure:

- Prior to using the manikin, ensure it reaches room temperature.
- Ensure multi-plug AC power outlets exist in the workspace to charge the simulator and its powered components. The manikin and instructor tablet are battery operated and enabled for wireless use.
- Plug in the tablet, manikin, and rechargeable accessories to a power source using only the power cords provided. Use the diagram provided in the Unpacking Your CAE Manikin to identify the designated cords associated with this equipment.
- Do not power on any components unless instructed to do so in the Setup Procedure section of this guide.

Setup Procedure

After reviewing the guidelines for unpacking the manikin and setup preparation, proceed to the setup procedure steps.

<table>
<thead>
<tr>
<th>Set Up the Aria Simulator System</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Place the Aria manikin in the work area.</td>
</tr>
<tr>
<td>2</td>
<td>Connect the manikin power cord to Aria.</td>
</tr>
<tr>
<td>3</td>
<td>Connect the manikin power cord to a power source.</td>
</tr>
<tr>
<td>4</td>
<td>Charge the Instructor Tablet.</td>
</tr>
<tr>
<td>5</td>
<td>Charge the Accessories.</td>
</tr>
<tr>
<td>6</td>
<td>Power on the Aria manikin.</td>
</tr>
<tr>
<td>7</td>
<td>Power on the Instructor Tablet.</td>
</tr>
<tr>
<td>8</td>
<td>Open the CAE Maestro software application on the Instructor tablet.</td>
</tr>
<tr>
<td>9</td>
<td>Modify the blood pressure cuff.</td>
</tr>
<tr>
<td>10</td>
<td>Prime the fluid systems.</td>
</tr>
</tbody>
</table>
Step 1: Place the Aria Manikin in the Work Area

Select a work area with enough space for all equipment and to easily access and move around the manikin. A minimum of 2 ft x 4 ft (61 cm x 122cm) work area is recommended.

Before placing the manikin on a surface, make sure it can support a minimum of 50 lbs (22.7 kg).

IMPORTANT: Never lift the manikin by the limbs. Support the manikin's head and lift it from the torso.

Note: Live and Advanced configurations support wireless use of the Instructor tablet. When working with these configurations, ensure a multi-plug AC power outlet is located close to the workspace to recharge powered components.

The Aria manikin comes preassembled. It is recommended that two persons lift and move the manikin to the work area to avoid damage to the manikin.

Place the desired genitalia, wig, and gown on the manikin (all included with the manikin).

The manikin includes male and female interchangeable genitalia and wigs. See the *Using Aria* section of this user guide for instructions on how to change the genitalia.
Step 2: Connect the Manikin Power Cord to Aria

Remove the manikin power cord from the shipping container. Align the pins of the manikin power cord to the black power connection located at the manikin's buttocks.

Plug in the manikin power cord to the black power connection.

Step 3: Connect the Manikin Power Cord to a Power Source

With the manikin power cord plugged in to the black power connection located at the manikin's buttocks, plug the other end of the power cord into a power source.
Step 4: Charge the Instructor Tablet

An Instructor tablet will be provided with the Live and Advanced configurations. Remove the tablet and tablet power adapter from the box. Connect the power adapter to the tablet. Insert the power cord between the adapter and a power outlet.

Allow the tablet to fully charge.

Step 5: Charge the Accessories

A CAE StethoSym will be provided with the Live and Advanced configurations, and the SymDefib will be provided with the Advanced configuration and is available as an option with the Live Configuration. Remove these accessories from the shipping container. Use only the provided power cords to charge these accessories.

Note: Do not use any other power sources to charge other than the ones provided to avoid damage to the accessories.

Charging the StethoSym

Attach the power cord and connect to a power source. The charging status of the StethoSym can be visually detected with the following colors of the light indicator:

<table>
<thead>
<tr>
<th>Light Color</th>
<th>Power Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>Unit is plugged into a power source and battery is charging. Orange light turns off when the unit is fully charged.</td>
</tr>
<tr>
<td>Green</td>
<td>Unit is on and fully charged.</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>Battery level is low and needs to be charged.</td>
</tr>
<tr>
<td>Blue</td>
<td>Unit is on and receiving signal from manikin.</td>
</tr>
</tbody>
</table>

Charging the SymDefib

Attach the power cord to the back of the black box and connect to a power source. When the SymDefib is turned on, the status indicator light flashes green to indicate that the unit is turned on.

Note: The SymDefib only charges while the switch is in the On position.
Step 6: Power On the Aria Manikin

Follow this procedure to power on the manikin.

1. Press the power button located on the bottom of the manikin’s right foot for one second and release.

 ![Power Button](image)

 Power Button

 Powering on the Aria Manikin

 The power light will flash Blue three times, then the light will turn solid Green while the unit is powering on. During this time, the manikin’s compressor will start running and the SymEyes will open to display blue eyes.

2. Wait for the power-up initialization to be complete. When the initialization is successfully completed the power light will turn a solid Orange if plugged into a power source and the manikin will say, “Hello.” After the manikin says, “Hello”, the SymEyes will go blank until a simulation session starts.

 If you are running the manikin untethered (not connected to a power source), the power light on the foot will remain a solid Green. When the battery capacity shown in Maestro is below 11%, the power light will be Red.

 Note: You can also view the manikin power status via the manikin power icon on the CAE Maestro run screen.

 The manikin battery run time is approximately 5 hours.
Aria Power Button LED Color Chart

<table>
<thead>
<tr>
<th>Power Button LED Color</th>
<th>System State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing blue every second</td>
<td>In bootloader mode with update</td>
</tr>
<tr>
<td>Flashing blue every second three times</td>
<td>In bootloader mode when there is no update</td>
</tr>
<tr>
<td>Solid green immediately after bootloader mode</td>
<td>In initialization mode</td>
</tr>
<tr>
<td>Solid green after initialization mode</td>
<td>In running mode, with charger unplugged</td>
</tr>
<tr>
<td>Solid orange after initialization mode</td>
<td>In running mode, with charger connected</td>
</tr>
<tr>
<td>Solid red after initialization mode</td>
<td>Battery low or other hardware errors</td>
</tr>
<tr>
<td>Flashing blue every 30 seconds</td>
<td>In system low-power mode</td>
</tr>
<tr>
<td>Flashing green</td>
<td>In power-down mode</td>
</tr>
<tr>
<td>Flashing red</td>
<td>Battery is low and must be charged</td>
</tr>
<tr>
<td>Solid red</td>
<td>Battery is drained and must be charged</td>
</tr>
</tbody>
</table>

Aria Battery and Power Scenarios

The % values provided in the table below represent the average battery capacity as represented in the Maestro UI.

<table>
<thead>
<tr>
<th>Battery Capacity - Maestro</th>
<th>Battery Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average capacity is larger than 11%</td>
<td>Normal</td>
<td>The system runs normally.</td>
</tr>
<tr>
<td>Average capacity is between 4% and 11%</td>
<td>Low</td>
<td>The button LED becomes solid Red.</td>
</tr>
<tr>
<td>Average capacity is between 0% and 4%</td>
<td>Critical</td>
<td>The button LED starts blinking Red.</td>
</tr>
<tr>
<td>Capacity is 0%</td>
<td>Shutdown</td>
<td>Set the battery with low capacity to shipping mode. External power will need to be plugged in to charge and operate the system. If both batteries are in shipping mode, the manikin shuts down immediately.</td>
</tr>
</tbody>
</table>

The system powers off (i.e. goes to low power mode, with Blue LED flashing every 30 seconds) automatically if it is powered on but not running a simulation for 4 hours.

The system sets both batteries to shipping mode (batteries off) if it is in low power mode for 7 days.
Step 7: Power on the Instructor Tablet

Ensure the tablet has been fully charged. Power on the tablet by pressing the power button on the top of the tablet.

Tablet Power Button
Step 9: Modify the Blood Pressure Cuff

To modify the blood pressure cuff:

1. Cut the tubing attached to the gauge approximately 9 cm from the cuff.
2. Locate the T-shaped blood pressure adapter.
3. Insert the barbed connectors into the cut ends of the blood pressure cuff tubing.
4. Secure the tubing connectors with cable ties.
5. Use scissors to trim the cable ties.
6. Connect the extension from the long end of the T-shaped blood pressure adapter to the NIBP port on Aria's right side.
Step 10: Prime the Fluids Systems

To prime the Antecubital IV site:

1. Attach the IV tubing and empty IV bag to the drain port on the manikin. Make sure the valve on the spike set is open.

2. Remove cap from the antecubital fill port on the back of the left upper arm.

3. Fill syringe with 20 ml of distillled fluid and attach empty syringe to the IV fill port.

 Note: You may use distillled fluid mixed with red food coloring to simulate flashback if desired.

4. Inject the 20 ml of distilled water and remove the syringe and replace the fill port cap.

5. The antecubital site is now ready for venipuncture.

To prime the jugular and left hand preported IV sites:

1. Attach the IV tubing and empty IV bag to drain port on the manikin.

2. Remove cap on the IV port sit and inject 10 mL of fluid. Replace cap.

3. During simulation, attach the IV tubing and fluids to be infused.

Priming the IV System for Flashback
Before catheterizing the simulator, the genitourinary (GU) system must be primed.

To prime the GU system:

1. Fill a syringe with distilled water (and clinically appropriate food coloring if desired).
2. Connect the syringe to the urinary module filling tool.
3. Plug the urinary module filling tool into the Urinary port.
4. Slowly inject a minimum of 4 mL of distilled water until fluid drains into the overflow reservoir on the urinary module filling tool.
5. Disconnect the urinary module filling tool from the Urinary port.
6. Store the urinary module filling tool in a secure location.
ARIA FEATURES

CAE Aria is a wireless and tetherless patient simulator that displays the physical characteristics of a seven-year old child. Aria enhances pediatric simulation-based education of healthcare workers by helping them to develop critical decision-making and patient care skills in a risk-free environment. This pediatric patient simulator offers a wide variety of features, both passive and facilitator controlled using the CAE Maestro software. This chapter will identify the various features offered with Aria and its capabilities designed specifically for training in emergency pediatric care.

Physiological Features

Aria presents patient reactions based on complex neurological, cardiovascular, gastrointestinal, genitourinary, and respiratory models. The manikin allows for the physical assessment of various clinical signs (i.e., bowel, heart, lung and breath sounds, palpable pulses, chest excursion, airway patency, etc.) that are dynamically coupled with the mathematical models of human physiology and pharmacology.

Articulation

Aria is wireless, tetherless, and offers realistic articulation for range of motion exercises in the hips, knees, ankles, shoulders, elbows, and neck. Aria also has cervical motion for the practice of patient stabilization.

Neurological System

Aria is equipped with a number of features specifically targeted to support training for neurological care. For more information, see the Using Aria section of this user guide.

<table>
<thead>
<tr>
<th>Neurological System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck articulation (allows for stiff neck).</td>
</tr>
<tr>
<td>The blink mode, light reactivity, pupil diameter and blink speed of the eyes can be controlled from the software.</td>
</tr>
<tr>
<td>SymEyes display patient symptoms and conditions, including jaundice, hemorrhage, keyhole pupil, cataracts and bloodshot or droopy eyes. Blinking, panning and reactive eyes with multiple settings.</td>
</tr>
<tr>
<td>Scripted vocal sounds and speech, as well as wireless voice with VOIP.</td>
</tr>
<tr>
<td>The manikin can simulate seizures with rhythmic movement of both the arms and legs (Advanced configuration only).</td>
</tr>
<tr>
<td>Intracranial pressure value can be set and displayed on the Patient Monitor.</td>
</tr>
<tr>
<td>Body and blood temperature can be set using software controlled temperature parameters.</td>
</tr>
<tr>
<td>Pain response can be observed by performing sternal rub (Advanced configuration only).</td>
</tr>
</tbody>
</table>
Respiratory System
The simulator represents a realistic Respiratory System to achieve an extremely accurate simulation of respiration. This system is tightly integrated with the Cardiovascular System.

Respiratory System
- Airway Adjuncts Placement
- Head Tilt/Chin Lift/Jaw Thrust
- Manual Ventilation (BVM) demonstrates chest rise and fall
- Spontaneous Chest Excursion
- Audible Breath Sounds
- Bronchial Occlusion
- Lung Sound Auscultation
- Right Mainstem Detection
- Simulated Pulse Oximeter
- Nasopharyngeal Procedural Suctioning (no fluids)
- Nasal and Oral Endotracheal Intubation
- Fiberoptic, Retrograde, Esophageal and Right Mainstem Intubation
- Surgical/Needle Cricothyrotomy
- Tracheostomy
- Transtracheal Jet Ventilation
- Ventilation Detection
- Software-based FiO2

In addition to these respiratory system features, the Advanced configuration includes the following features to enhance the fidelity of the simulator.

Advanced Respiratory System
- Laryngospasms
- Pharyngeal Swelling
- Substernal Retractions
- Tongue Swelling
- Variable Bronchial Resistance
- Variable Chest Compliance
See the Appendix A - Recommended Clinical Supplies section of this user guide for information associated with the Respiratory System features of the simulator.

Cardiovascular System

Similar to the Respiratory System, the Cardiovascular System accurately simulates a wide variety of hemodynamic conditions and responses.

<table>
<thead>
<tr>
<th>Cardiac System</th>
</tr>
</thead>
<tbody>
<tr>
<td>The simulated patient generates heart sounds, including a range of pathological ones that are synchronized to the QRS complex of the ECG and are audible with a StethoSym assembly. There are four heart sound speakers which can be controlled independently.</td>
</tr>
<tr>
<td>A standard blood pressure cuff and sphygmomanometer can be used with the StethoSym assembly to assess blood pressure by palpation or by auscultating Korotkoff sounds on the right arm.</td>
</tr>
<tr>
<td>Chest compression detection and advanced CPR Metrics that can detect hand placement, rate and depth of compressions, chest recoil, ventilation volume and rate.</td>
</tr>
<tr>
<td>Carotid, brachial, radial, and femoral pulses can be palpated bilaterally and are synchronous with the cardiac cycle. A pulse deficit automatically occurs if the systolic arterial blood pressure falls below specified thresholds. The intensity of the pulse reflects current physiology or can be set to absent, weak, normal, or bounding.</td>
</tr>
<tr>
<td>Bilateral Popliteal & Dorsalis Pedis Pulses (Advanced configuration only)</td>
</tr>
<tr>
<td>Capillary Refill (Advanced configuration only)</td>
</tr>
<tr>
<td>Commercial ECG Device Compatible</td>
</tr>
<tr>
<td>Circumoral Cyanosis (Advanced configuration only)</td>
</tr>
<tr>
<td>Fingerstick Blood Glucose</td>
</tr>
<tr>
<td>Library of Cardiac Rhythms</td>
</tr>
<tr>
<td>Variable Pulse Strength</td>
</tr>
<tr>
<td>4-Lead ECG waveforms can be viewed on a standard monitor and/or the Patient Status Display in the Patient Monitor of the software.</td>
</tr>
<tr>
<td>Software-based 12-Lead dynamic ECG</td>
</tr>
</tbody>
</table>
Gastrointestinal System
The Aria manikin features a realistic Gastrointestinal System for practicing clinical care skills.

<table>
<thead>
<tr>
<th>Gastrointestinal System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastric Distention with esophageal intubation</td>
</tr>
<tr>
<td>Gastrostomy Tube with Fluids</td>
</tr>
<tr>
<td>Orogastric/Nasogastric Tube insertion (no fluids)</td>
</tr>
<tr>
<td>Bowel Sound Auscultation</td>
</tr>
</tbody>
</table>

Genitourinary System
The Aria manikin is provided with both male and female genitalia. The genitourinary system is designed for excretion of urine upon catheterization. For more information on changing the genitalia, see the *Using Aria* section of this user guide.

Medication Administration
The Aria manikin features Medication Administration capabilities for practicing emergency care skills.

<table>
<thead>
<tr>
<th>Medication Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral IV sites</td>
</tr>
<tr>
<td>Jugular Venous Catheter</td>
</tr>
<tr>
<td>Humeral IO (no fluids)</td>
</tr>
<tr>
<td>Tibial IO (with fluids)</td>
</tr>
<tr>
<td>IM/SQ left deltoid and left thigh injection sites</td>
</tr>
<tr>
<td>Rectum for Suppository Administration</td>
</tr>
<tr>
<td>Software-based Drug Administration</td>
</tr>
</tbody>
</table>
Simulated Clinical Experiences

The Aria simulator is a manual-driven, script-controlled system designed to simulate a patient’s physiological condition, clinical signs, symptoms, and responses to certain clinical interventions. Simulated Clinical Experiences, or SCEs, are process tools that enable the faculty/educator to execute a learning strategy using simulation. Each process tool provides an extensive overview and outline of the learning exercise and requires minimal additional faculty development time for use. Each SCE is comprised of a patient and the scenario.

Aria includes ten preconfigured SCEs (Manual mode), or clinical simulations, that cover a range of events and crises.

- Accidental Burn Injury
- Accidental Electrocution
- Accidental Overdose
- Closed Head Injury
- Diabetic Keto Acidosis (DKA) with Hypoxia
- Envenomation
- Gunshot Wound with Pneumothorax
- Obstructed Airway with Anaphylaxis
- Submersion Injury
- Trauma with Pneumothorax

Each SCE includes the information below:

- Background information and patient history
- Synopsis
- Learning objectives
- Learning performance measures
- Equipment and supplies suggested for the simulation
- Facilitator notes
- Debriefing points
- Teaching Q&A
- References
Features

Scenarios
Each scenario is a set of simulator commands that instruct or cause the simulator to react or respond in a specific manner. Scenarios are used to determine the initial and subsequent physiological states as well as the different conditions that arise during the simulation exercise. Each scenario also includes documentation to support its use.

By utilizing the SCE Designer feature of the Maestro software, users can copy and modify the preconfigured scenarios or create custom scenarios from scratch to meet specific educational objectives.

Instructors may also modify events within a given scenario in real-time to increase or decrease event severity and shorten or prolong the duration of an event at any time during a simulation exercise.

For instructions on modifying scenarios and creating new scenarios, refer to the Maestro for Aria User Guide.

System Controls
Aria is designed to allow the instructor to focus attention on learner actions and reactions by providing a flexible set of tools that adjust to the instructor's needs.

Application Software
CAE Maestro software is the application that provides the instructor a means to control all features of the simulator. Instructors can select SCEs as well as control the flow of the scenarios via the user interface. Various medication, cardiovascular, respiratory, fluid, and other parameters can be individually applied “on the fly” to enhance the course of a simulation exercise. A Patient Status Display and set of simulation log entries provide a real-time display of vital signs, blood gases, medications administered, and other events. This data can be exported into permanent storage or printed for future reference.
USING ARIA

Once the simulator is assembled, the Aria manikin is ready for learners to practice and master new competencies, interventions, and skills during clinical scenarios.

To create a fully immersive simulation experience with advanced intervention capabilities and realtime data feedback, the Aria simulator utilize instructor-led software with scenario programming capabilities.

For more information about features associated with each configuration of this simulator, see the *Aria Features* section of this user guide.

For recommended sizes for clinical supplies, see Appendix A - *Recommended Clinical Supply Sizes*.

Note: CAE recommends keeping the simulator plugged into a power source while it is in use to extend the longevity of the battery life. To optimize battery life, only remove the power plug during simulations where the patient will be moved or transferred as part of the scenario. For further information, refer to the *Storage* section of this user guide.

Neurologic System

These features include:

- Blood temperature
- Body temperature
- Convulsions
- Pain response due to sternal rub

Users can also control the eyes, speech and vocal sounds from the instructor-led software.

For more information, see the *Maestro for Aria User Guide*.
Neurologic System Controls

The clinical features for the Neurologic system are controlled manually, through the software, or both.

<table>
<thead>
<tr>
<th>Neurologic System Controls</th>
<th>Clinical Interventions, Patient Monitoring and Scenarios.</th>
<th>Software Control</th>
<th>Manual Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial Pressure</td>
<td>The intracranial pressure of a patient can be an indicator of the patient's condition.</td>
<td>Tap Neuro and tap ICP to adjust. Set ICP setting and onset time.</td>
<td>None required.</td>
</tr>
<tr>
<td>Eyes</td>
<td>Eyes can be used as an indicator of a patient's condition and/or consciousness during an assessment.</td>
<td>Tap Eyes on Run screen and tap desired status.</td>
<td>None required.</td>
</tr>
<tr>
<td>Convulsions</td>
<td>Simulated convulsions can be activated at the facilitator's discretion (Advanced).</td>
<td>Tap Neuro and locate Convulsions in menu; use ON/OFF toggle.</td>
<td>None required.</td>
</tr>
<tr>
<td>Temperature: Body</td>
<td>Myocardial oxygen supply and demand automatically influence the cardiac rhythm, yielding response to hypoxemia (Modeled only).</td>
<td>Tap Neuro and tap Temperature: Body to adjust.</td>
<td>None required.</td>
</tr>
<tr>
<td>Temperature: Blood</td>
<td>Changes in arterial temperature may alter the position of the standard oxyhemoglobin dissociation curve (shift). As temperature increases or pH decreases, more oxygen is released from hemoglobin and thus the patient's saturation decreases (Modeled only).</td>
<td>Tap Neuro and tap Temperature: Blood to adjust.</td>
<td>None required.</td>
</tr>
<tr>
<td>Sternal Rub</td>
<td>Pain response can be induced through the software when performing sternal rub (Advanced). The manikin will say, “Ouch!”</td>
<td>Tap Neuro and locate Sternal Rub. Feature is ON by default. Can toggle to OFF if no pain response preferred.</td>
<td>None required.</td>
</tr>
</tbody>
</table>

Note: With Convulsions enabled, the manikin's eyes will remain open but on the Maestro run screen the image of the eyes will be blinking.
Eyes

SymEyes

The simulator comes equipped with CAE SymEyes™.

The blink mode, light reactivity, pupil diameter and blink speed of the simulator’s eyes can be controlled from the software.

From the Run Screen, tap on the eyes or Eyes button to open the Eyes state screen.

Eye states can be adjusted from the Eyes state menu by tapping the drop-boxes for the following eye states:

- Blink Speed: Normal, Slow, Fast, Rapid
- Blink Mode: Closed, Blinking
- Light Reactivity: Brisk, Sluggish, None
- Pupil Diameter: 2 - 6 mm

Note: Both eyes can be controlled together by tapping on the Control Eyes Together box.

The following eye states can also be turned on or off (Default: Off):

- Normal
- Jaundice
- Bloodshot
- Hemorrhage (Both, or Right only)
- Keyhole Pupil
- Droopy Eyelids
- Cataracts

Panning and Consensual Pupil Response can be toggled on or off (Default: On).

Eye Brightness can also be controlled in the Eyes state screen.
For more information on how to control the SymEyes, see the *Maestro for Aria User Guide*.
Respiratory System

The Aria manikin includes respiratory features that allow learners to practice emergency assessment and life support skill sets. With the manikin, learners can:

- Manage difficult airways
- Perform intubation and procedural suctioning
- Recognize and resolve right mainstem intubation
- Perform needle decompression
- Perform chest tube insertion
- Recognize cyanosis (Advanced)
- Perform cricothyrotomy
- Maintain tracheostomy site

Respiratory System Controls

Aria uses both physical and mathematical models to achieve an extremely accurate simulation of respiration. Aria's chest rises and falls, mimicking inspiration and expiration. Aria's lungs also react realistically to intubation as well as to pathophysiologic states.

<table>
<thead>
<tr>
<th>Respiratory System Controls</th>
<th>Clinical Interventions, Patient Monitoring and Scenarios</th>
<th>Software Control</th>
<th>Manual Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy, Physiology and Clinical Signs</td>
<td>Normal tidal breathing and pathophysiological conditions such as atelectasis, pneumothorax, asthma and COPD.</td>
<td>None required, but adjustable.</td>
<td>None required.</td>
</tr>
<tr>
<td>Spontaneous Breathing</td>
<td>VIEW: Respiratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual Chest Excursion</td>
<td>Synchronized with manual ventilation, spontaneous or positive pressure ventilation. Excursion depth proportional to tidal volume.</td>
<td>None required, but adjustable.</td>
<td>Apply ventilation via bag valve mask.</td>
</tr>
<tr>
<td></td>
<td>VIEW: Respiratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONTROL: Toggle Apnea ON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Respiratory System Controls

<table>
<thead>
<tr>
<th>Anatomy, Physiology and Clinical Signs</th>
<th>Clinical Interventions, Patient Monitoring and Scenarios</th>
<th>Software Control</th>
<th>Manual Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung Sounds</td>
<td>Normal and abnormal lung sounds are independently synchronized with ventilation of the right and left lungs. Lung sounds can be auscultated over anterior and posterior anatomic locations.</td>
<td>None required, but adjustable.</td>
<td>None required.</td>
</tr>
<tr>
<td>Pulse Oximetry</td>
<td>Oxyhemoglobin saturation (SpO₂) automatically correlates with the oxygen concentration in the lungs and the intrapulmonary shunt fraction.</td>
<td>None required, but adjustable.</td>
<td>Connect SpO₂ probe to connection on left side of manikin.</td>
</tr>
<tr>
<td>Needle Decompression</td>
<td>Decompression of a pneumothorax can be performed unilaterally on the left side by inserting a needle at the midclavicular line of the second intercostal space.</td>
<td>The instructor must adjust the amount of physiologic intrapleural air present.</td>
<td>Perform Needle Decompression at designated sites.</td>
</tr>
<tr>
<td>Laryngospasm</td>
<td>Closes the patient’s vocal cords and prevents both ventilation and intubation.</td>
<td>From the Run Screen, tap Respiratory and adjust Laryngospasm toggle.</td>
<td>None required.</td>
</tr>
</tbody>
</table>

VIEW: Sounds and select Lung. Changes can be made to both anterior and posterior lung sounds.

CONTROL: ON/OFF
<table>
<thead>
<tr>
<th>Anatomy, Physiology and Clinical Signs</th>
<th>Clinical Interventions, Patient Monitoring and Scenarios</th>
<th>Software Control</th>
<th>Manual Control</th>
</tr>
</thead>
</table>
| Posterior Pharynx Swelling/ Airway Occlusion | Swelling of the posterior oropharynx (posterior airway occlusion) obstructs the view of the larynx and prevents intubation, but allows mask ventilation of the patient's lungs, thereby creating a “cannot intubate, can ventilate” scenario. | From the Run Screen, tap **Respiratory** and adjust **Airway Occlusion** toggle.
VIEW: Respiratory
CONTROL: ON/OFF | None required. |
| Bronchial Occlusion | Completely obstructs the right or left bronchi, simulating a lower airway obstruction (e.g., mucus plug). | From the Run Screen, tap **Respiratory** and adjust **Bronchial Occlusion** toggle.
VIEW: Respiratory
CONTROL: Left/Right ON/OFF | None required. |
| Bronchial Resistance | Resistance of the respiratory tract to airflow during inhalation and exhalation. | From the Run Screen, tap **Respiratory** and adjust **Bronchial Resistance Factor:** Left or Right
VIEW: Respiratory
CONTROL: Left/Right - Set desired level of resistance | None required. |
| Substernal Retractions | An inward movement of the chest wall at the end of the sternum demonstrating difficulty breathing. | From the Run Screen, tap **Respiratory** and adjust **Substernal Retractions.**
CONTROL: ON/OFF | None required. |
| Swollen Tongue | Swelling of the tongue obstructs the view of the larynx and prevents intubation, but allows mask ventilation of the patient's lungs, thereby creating a “cannot intubate, can ventilate” scenario. | From the Run Screen, tap **Respiratory** and adjust **Swollen Tongue** toggle.
VIEW: Respiratory
CONTROL: ON/OFF | None required. |
Airway Management

The manikin’s anatomically realistic upper airway provides for the opportunity to intubate the pediatric patient, while various clinical signs (e.g., lung sounds, chest excursion, airway patency) can be simulated using software commands. Other airway features include:

- Hard and Soft Palate
- Oropharynx
- Nasopharynx
- Laryngopharynx

Intubation

The upper airway of the Aria manikin is designed to allow for intubation and laryngoscopy. Direct laryngoscopy as well as oral and nasal tracheal intubation can be performed using devices such as endotracheal tubes, nasopharyngeal airways, and oropharyngeal airways.
WARNING

Airways can be damaged by improper insertion of an airway adjunct (i.e. endotracheal tube). To protect the airway, lubricate the adjunct prior to insertion using the silicone oil spray provided.

Use ONLY the provided silicone oil spray to lubricate the adjunct. NEVER use a water-based lubricant, which can cause residue damage.
Right Mainstem Intubation

If a learner performs an intubation improperly that results in a right mainstem intubation, the left side of the chest will not rise when ventilated and sounds in the left lung will be absent upon auscultation. Additionally, an indicator appears on the Airway avatar in the Maestro software and an event for right mainstem intubation will be captured in the SCE Event log. Right mainstem is not logged until the first ventilation is performed.

CAE Maestro Airway Avatar - Right Mainstem Intubation Indicator
Laryngospasm

The Aria Advanced configuration comes with a software-controlled laryngospasm feature to increase the difficulty of intubation and can be toggled on or off.

To activate the laryngospasm feature:

1. Enable Laryngospasms in the Maestro software. Tap the Respiratory icon on the SCE run screen.
2. Slide the Laryngospasm parameter toggle to the ON position.

To resolve the laryngospasm feature:

1. From the Run screen, tap on the white dot with X to the right of Laryngospasm enabled. OR
2. Tap the Respiratory icon on the SCE Run screen and slide the Laryngospasm parameter toggle to the OFF position.

Bronchial Resistance

The Aria configurations include a variable bronchial resistance feature that is software-controlled.

To control bronchial resistance in the software:

1. Tap the Respiratory icon on the SCE run screen.
2. Tap on Bronchial Resistance Factor: Left or Bronchial Resistance Factor: Right and adjust the settings as desired.

Resistance settings can be toggled from 0.20 - 250000.00 (Default: 1.00)

A setting >=5 will result in moderate resistance.

A setting >=50 will result in occlusion.

The user can also induce bronchial occlusion by tapping the Left or Right bronchial occlusion toggle ON or OFF (Default: OFF).

Note: When bronchial occlusion is enabled, unilateral chest excursion can be observed during spontaneous or positive pressure ventilation.

Gastric Distention

During esophageal intubation or overly aggressive bag-valve-mask ventilation, gastric distention occurs. Gastric distention is relieved by putting pressure on the abdomen.
Tracheostomy Tube Placement and Suctioning

The following instructions provide steps for adequate tracheostomy tube placement.

Learners can:

- Clean the tracheostomy site.
- Replace the tube.
- Ventilate via tracheostomy tube.

To place a tracheostomy tube:

1. Remove the crico skin cover plate. Set it aside.
2. Prime the airway reservoir using silicone oil spray.
3. Place the tracheostomy tube into the tracheostomy site and secure it in place.
4. After the simulation, remove the tracheostomy tube and replace the crico neck skin plate.
Chest Excursion

During ventilation (BVM, endotracheal intubation, etc.), the chest will rise with sufficient ventilation volume.

Aria presents with spontaneous chest excursion that simulates a patient breathing without the required external ventilation. The following chest excursion parameters can be modified in Maestro:

- **Respiratory Rate**: Defines the number of excursions (chest rise) in one minute.
- **Apnea**: Disable the spontaneous chest excursion but still allows for excursion during external ventilation.
- **Tidal Volume**: Changes the height of chest excursions.
- **Intrapleural Volume**: Disables chest excursion on the affected side but still allows for excursion on the unaffected side.
Using Aria

Ventilation

Aria supports manual bag-valve-mask (BVM) ventilation via face mask, airway adjuncts, endotracheal tube, and tracheostomy tube. Proper ventilation will demonstrate chest rise and fall.

Manual Bag-Valve-Mask (BVM) Ventilation

Laryngeal Mask Airway (LMA) Ventilation

Ventilator Support

Aria supports basic functionality of a ventilator. Low levels or PEEP (5-10) with normal volume (7-10 ml/kg depending on PEEP) can be supported. Reasonable lung compliances and resistances are supported for the scenarios of PARDS and Pneumonia as well as variable airway resistance for obstructed airway.

The simulator does not inhale so it will be unable to trigger a ventilator. Reasonable pressure/volume curves should be visible.
Aria supports a maximum ventilation of approximately 220 ml with a PEEP of 0. This volume will decrease when PEEP is used.

Note: The Advanced configuration only supports asynchronous volume and pressure controlled modes of mechanical ventilation.

Cricothyrotomy

Before performing a needle cricothyrotomy:

1. Gently remove the crico skin cover plate.

2. Place a 2.2 inch (6 cm) length of red tape from the roll provided over the tracheal opening.

3. Replace the crico skin cover plate.
To replicate a needle cricothyrotomy:

1. Spray the silicone oil spray onto the airway adjunct prior to the simulation session. To prevent damage to the simulator, always lubricate the airway prior to each simulation.

2. Locate the simulated cricothyroid membrane sealed with tape underneath the neck skin.

3. Follow standard clinical techniques and palpate to find the cricothyroid space.

4. Puncture the space through the neck skin of the patient simulator and into the tape “membrane.” This puncture penetrates all the way through to the “trachea,” simulating the clinical procedure.

5. Users must replace the tape that simulates the cricothyroid membrane after each cricothyrotomy.

Note:

- When ventilating through a surgical airway, the Laryngospasm feature must be deactivated in the Maestro software, or the chest rise is not observed.

- When finished using the Cricothyrotomy feature, remove the red tape and use alcohol to clean the glue residue from the surface. Allow to dry.
Pneumothorax (Needle Decompression)

By inserting a needle into the second intercostal space, mid-clavicular line, the sound of air being released can be heard and the intrapleural volume is reduced. Chest excursion and breath sounds automatically resume on the affected side.

Chest Tube

To perform a chest tube insertion:

1. Lubricate the chest tube with silicone oil spray.

2. Insert into the insertion point at the mid-axillary line of the fifth intercostal space on the left side of the manikin and secure in place.
Using Aria

Note: For manikins equipped with the bleeding option, when the chest tube is inserted chest tube drainage is attained.

For supported chest tube size, see *Appendix A - Recommended Clinical Supply Sizes*.

Cardiovascular System

Aria includes cardiovascular features that allow learners to practice basic assessment and emergency life support skill sets. Learners can:

- Palpate pulses
- Perform venipuncture
- Administer IM and SQ injections
- Perform IO procedures
- Auscultate realistic heart sounds using a StethoSym assembly
- Perform chest compressions
- Perform ECG monitoring
- Perform fingerstick blood glucose testing
- Perform simulated defibrillation, cardioversion and pacing via the Maestro software or with real equipment
Cardiovascular System Controls

With Aria’s Cardiovascular system, users can replicate the clinical signs associated with cardiac activity, including palpable pulses, heart sounds, and electrical activity.

<table>
<thead>
<tr>
<th>Cardiovascular System Controls</th>
<th>Clinical Interventions, Patient Monitoring and Scenarios.</th>
<th>Software Control</th>
<th>Manual Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Sounds</td>
<td>Normal and abnormal heart sounds are synchronized to the cardiac cycle and audible with a standard stethoscope and a StethoSym assembly. Heart sounds can be auscultated over the upper left and right sternal border, the lower left sternal border and apex.</td>
<td>None required; specific sounds can be selected.</td>
<td>None required.</td>
</tr>
<tr>
<td></td>
<td>From the Run screen, tap Sounds and select Heart tab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Lead ECG</td>
<td>ECG waveforms can be viewed on a standard monitor and/or on the Patient Monitor. Normal and abnormal cardiac rhythms are linked to patient physiology (e.g. blood pressure, cardiac output).</td>
<td>None required; specific rhythms can be selected.</td>
<td>Attach 4 ECG leads to the ECG posts and attach to the cardiac monitor.</td>
</tr>
<tr>
<td></td>
<td>VIEW: From the Run screen, tap Pulse and tap on the pulse location desired to change intensity and/or pulse deficit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpable Pulses</td>
<td>Pulses can be palpated bilaterally and are synchronous with the cardiac cycle. A pulse deficit automatically occurs if the systolic arterial blood pressure falls below specified thresholds.</td>
<td>None required, but adjustable.</td>
<td>None required.</td>
</tr>
<tr>
<td></td>
<td>VIEW: From the Run screen, tap Pulse and tap on the pulse location desired to change intensity and/or pulse deficit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Invasive Blood Pressure Measurement</td>
<td>Systemic blood pressure can be measured using the return-to-flow technique. Korotkoff sounds can also be auscultated.</td>
<td>Volume of Korotkoff sounds can be adjusted by tapping Sounds on the Run screen and then the Korotkoff tab.</td>
<td>Use of modified blood pressure cuff with T-adapter. Connect T-adapter to NIBP connection on manikin's right side.</td>
</tr>
</tbody>
</table>
Pulses

Aria includes bilateral pulses at the following locations:

- Carotid
- Brachial and Radial
- Femoral
- Popliteal and Dorsalis Pedis (Advanced configuration)

Each pulse location represents a zone. Settings of a pulse will affect the zone if both zones are touched at the same time. For example, if you set the right brachial to weak and the right radial to strong and touch both the brachial and radial pulses you will feel one strength.

There is a dominant pulse location within each zone. This means if the two pulse locations are palpated at the same time, the following will occur:

a. Brachial pulse settings take precedence over Radial pulse settings in the Brachial and Radial Zone.
b. Femoral right pulse settings take precedence in the Femoral Zone.
c. Popliteal pulse settings take precedence in the Popliteal and Dorsalis Pedis Zone.

The system supports all functions including variable pulse strength (weak, normal, and bounding), outside of this zone.
IV Administration

There are two IV sites on Aria’s left arm, located on the dorsum of the hand and the antecubital fossa. Each IV site has a fill/drain port. The sites are filled and drained through tubing running from the IV site up to the left shoulder.

Dorsum of the Hand IV Fill/Drain Port

Antecubital Fossa IV Fill/Drain Port
Preparing the IV Sites for Flashback and Aspiration

To prepare the IV site for flashback and aspiration, identify the ports that prime and drain the IV site on the left side of the manikin.

For instructions on how to prime and fill the IV sites, see the Setup section of this user guide.

For instructions on how to flush and drain the IV sites, see the Care and Maintenance section of this user guide.
IV Cannulation

Veins for the IV Cannulation feature are located in the left antecubital fossa region of the left arm.

To simulate realistic flashback, the system must be primed prior to use. Ensure all fluids have been removed from previous uses before each new use to prevent overfilling.

⚠️ WARNING

If flashback does not occur, do NOT inject any fluid and remove the needle immediately. Repeat the priming directions and ensure you have injected the needle properly and into the simulated vein.
Intramuscular (IM) Subcutaneous (SQ) Injection

Aria supports IM/SQ injection of the left humeral site located on Aria's left arm and the left vastus lateralis site located on Aria's left thigh.

Note: The IM/SQ pads can sustain multiple injections and can be removed and replaced after each injection to empty fluids.

Please see the *Care and Maintenance* section of this user guide for instructions on how to maintain the IM injection site, including how to remove and replace the IM pads.
Intraosseous (IO) Cannulation and Administration

Aria also allows for humeral and tibial intraosseous (IO) cannulation. The designated IO sites are located on Aria’s left shoulder and left leg.

To remove the IO puck:

1. Pull the IO puck out to remove it.

![Removing IO Puck]

To replace the IO puck:

1. Push the IO puck in to replace it.

Note: The IO puck can be removed and replaced after multiple injections. Please do not administer fluids through either the humeral or tibial IO sites.
Chest Compressions

The manikin supports normal hand placement and standard compression techniques so that chest compressions can be performed.

Administering Chest Compressions

CPR Monitor

The CPR Monitor captures the chest compression metrics in the Maestro software and saves the data collected during this intervention in SCE History.

For more information on how to use the CPR Monitor, see the Maestro for Aria User Guide.

ECG

On Aria, a 4-lead ECG is emitted from the appropriate positions for display on a standard monitor.

ECG Contact Locations
Connecting ECG Contacts

To produce ECG signals on a monitor, connect the lead unit to the ECG contacts located on the manikin.
Connecting the ECG to a Patient Monitor

A standard patient monitor can be used to connect to the manikin's ECG power plug. Simply connect the manikin's ECG connector to the monitor's connector.

Defibrillation, Cardioversion, and Pacing

Aria supports cardioversion, defibrillation, and pacing.

The manikin can receive simulated electrical therapy through the software or by using the SymDefib device with a live defibrillator. The SymDefib is included with the Advanced configuration and can be added to the Live configuration.

Simulated Defibrillation

For instructions on administering defibrillation through the software, refer to the *Maestro for Aria User Guide*.

Commercial Defibrillation

The manikin is designed to safely absorb the energy discharged from commercial defibrillators through the SymDefib.

Safety Precautions

Standard defibrillation energy levels should be used for positive learning reinforcement and to avoid negative training transfer. However, please refer to the following cautions.
Use of a defibrillator for training purposes represents an operational hazard equivalent to use of a defibrillator on a real patient. Consequently, ALL SAFETY PRECAUTIONS for the use of defibrillators MUST BE FOLLOWED as if the simulator were a patient. Consult the specific defibrillator's user manual for further information.

The following safety precautions and simulator information should be observed:

- Defibrillation should be performed while attached to the SymEquip cables. Defibrillation and pacing should never be performed directly to the manikin. If defibrillation is performed over any ECG electrode, high voltage may be present on the remaining connectors during the shock. This may also damage ECG circuitry.

- To prevent overheating, DO NOT provide more than three (3) defibrillator discharges (maximum 200 joules with a biphasic defibrillator) in a sequence. DO NOT exceed an average of two (2) defibrillator discharges per minute during the training session.

- Avoid a large number of consecutive discharges. For example, 20 or 25 discharges without any recovery interval may damage the system.

- Keep the simulator's chest dry. Special attention should be taken when using the urinary system or the chest tube feature.

- DO NOT use cables or connectors having visible damage.

- DO NOT spill fluids over any component inside the simulator torso. This could damage the system and may also present a possible hazard for the operator.

- When using a manual defibrillator, the ECG can be monitored via the hands-free pads. Coarse ventricular fibrillation and high-rate ventricular tachycardia cardiac rhythms are automatically recognized as “shockable” rhythms on AEDs.

- With each defibrillation, Aria automatically records the amount of energy discharged and the time defibrillation was performed. The simulated patient response to defibrillation is determined by the scenario script or instructor intervention. Thus, cardioversion is not automatically determined by the physiological models.

- The minimum electrical charge recognized by the circuitry within the simulator is 20 joules.

Using the SymDefib

The SymDefib box connects with a real defibrillator monitor and allows for use of real electrical therapy for defibrillation, cardioversion, and pacing.
Note: If using the SymDefib battery to power the SymDefib device, make sure to charge the SymDefib prior to use.

Charging the SymDefib
To defibrillate using SymDefib:

1. Connect the SymDefib cable to the defibrillator using the cables provided. The SymDefib system supports Phillips defibrillators without a cable adapter. If using Zoll or Physio-Control defibrillators, you must use the appropriate adapter between the cable on the SymDefib and the defibrillator.

2. If using a power supply (instead of the battery), plug the SymDefib power cord into the back port of the SymDefib box and plug the other end into the power source.

3. Connect the electrode pad cable to the right port on the front side of the SymDefib box.

4. With the manikin started, turn on the SymDefib and verify the status light flashes green to indicate it is on.

5. While the SymDefib is operating, attach the electrode pads to the magnetic connectors on the manikin. When connected, the SymDefib begins to display an ECG signal on the monitor and the status light turns a solid green.

Note: The SymDefib was paired to the simulator in the factory and should automatically connect wirelessly.
The following chest image identifies the location of the magnetic snaps.

Magnetic SymDefib Contacts

An AED can use the ECG signal to determine if a shock is necessary. You can deliver a shock to the manikin. The electrical current from the shock is absorbed by the cable and SymDefib box. It does not travel to the manikin or along the training pads. The SymDefib box measures and reports the energy delivered via the Maestro software.

When demonstrating proper pad placement, learners should attach the SymDefib pads in the appropriate locations on the manikin: one pad on the right side of the chest below the collarbone and the other pad on the left side of the chest.

Attach the SymDefib Electrode Pads
Using Aria

Cardioversion

The cardioversion procedure will vary depending upon the brand of defibrillator that is being used. However, the setup steps for the defibrillator will be the same as that described in the preceding section. Refer to defibrillator manufacturer’s user guide for proper use.

Pacing

Pacing can be achieved by selecting the appropriate intervention in Electrical Therapy within the Treatments button on the right side of the Run screen in the Maestro software.

Connect the ECG leads to the posts on the manikin. This provides ECG signals for leads I – III. The learner may choose to shock either synchronously or asynchronously to the ECG rhythm. The Pacing Capture Threshold can be modified in the Maestro software. The default threshold is set at 50 mA.

When the current exceeds the Pacing Capture Threshold set in Maestro, the learner begins to see the effect of pacing on the ECG and Maestro logs the current being provided.

A standard transthoracic cardiac pacemaker can be connected to the simulator using the anterior contacts. The simulator automatically detects and responds to pacing signals (from 20 mA to 200 mA, in increments of 10).

For more information, see the Maestro for Aria User Guide.

Blood Pressure

Aria supports non-invasive blood pressure measurements, and systolic and diastolic readings can be obtained and manipulated through the software.

Systolic and Diastolic Blood Pressure

To manually adjust the systolic and/or diastolic blood pressure:

1. From the Cardiovascular panel, select the parameter of desired blood pressure.
2. Set the pressure by moving the blue slider left or right, or by typing in a value.

Non-Invasive Blood Pressure Measurement

Blood pressure can be taken manually on the right arm. Non-invasive blood pressure (NIBP) monitoring techniques can be used by attaching a standard cuff modified with a T-fitting and adapters.
To get a blood pressure reading:

1. Connect the extension from the T-fitting on the blood pressure cuff adapter to the NIBP port on Aria’s right side.

2. Take the non-invasive blood pressure reading using the return-to-flow technique.

At appropriate cuff pressures, the radial pulse disappears and Korotkoff sounds are produced.
Blood Glucose Fingers

Aria includes the ability to perform fingerstick blood glucose testing. The second and third fingers on the left hand can be removed and filled with fluid.

To fill the glucose fingers with the simulated test blood:

1. Gently remove the glucose fingers from the hand.
2. Insert a 1 ml syringe and needle into the bottom opening of the finger. Stop when you hit the plastic stop wall and pull back slightly.
3. Withdraw as much air or fluid as possible with the syringe and remove syringe.
4. Fill a syringe with 0.5 ml of the simulated test blood.
5. Insert the syringe and needle into the bottom opening of the glucose finger until you hit the plastic stop wall and pull back slightly. Inject 0.2 ml of the simulated test blood and remove syringe.
6. Reattach the glucose fingers to the simulator hand.
Recommended formula for simulated test blood:

<table>
<thead>
<tr>
<th>Component</th>
<th>mls</th>
<th>mls</th>
<th>mls</th>
<th>mls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled Water</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Fake Blood Gel</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Glucose</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Anticipated Glucose Range</td>
<td><70</td>
<td>70 - 120</td>
<td>150 - 300</td>
<td>>300</td>
</tr>
</tbody>
</table>

Note: Fake blood gel must have thick consistency. Suggested products are Rubies® Fake Blood Theatrical or Smooth-On Sim Blood. The glucose product should yield approximately 80 calories per 12 fluid ounces. Suggested product is Gatorade® G Series sports drink. After mixing, check glucose level with glucometer. Add additional glucose product for the desired results.

To use the glucose fingers:

1. Prime the glucose fingers as noted above and place them back on the hand.

2. Prepare glucose test kit lancet (not included).

3. Find designated window port on either side of the glucose finger.

4. Prepare glucometer by inserting test strip into device (not included).

5. Place lancet against the window area on the glucose finger and trigger the needle. (Recommended to use the lowest setting on the lancet device.)
6. Massage area gently to get a droplet of the simulated test blood.

![Droplet of Simulated Test Blood](image)

7. Place droplet on designated test strip until it is registered by the glucometer.

![Place Droplet on Test Strip](image)

8. Wipe off any excess simulated test blood from the glucose finger with alcohol pad.

To reseal the glucose fingers:

1. Open the tube of silpoxy (included).

2. Touch the top of the silpoxy tube with a gloved finger.

3. Gently apply a thin layer of the silpoxy over the puncture area on the glucose finger and allow it to dry.

4. Recap the silpoxy tube.

Note: The blood glucose fingers can withstand two finger pricks (one on each side) before they need to be resealed using the silpoxy.

To drain the glucose fingers:

1. Gently remove the glucose fingers from the hand.

2. Insert a 1 ml syringe and needle into the bottom opening of the finger. Stop when you hit the plastic stop wall and pull back slightly.

3. Withdraw as much air or fluid as possible with the syringe and remove syringe.
SpO2 Finger Probe

The SpO2 finger probe is used to display the plethysmogram and associated with SpO2 numeric on the virtual Patient Monitor. When the SpO2 probe is not connected to the manikin then the Patient Monitor will display the plethysmogram. When connected but not on the finger, the Patient Monitor will not display the plethysmogram. When the SpO2 probe is on a finger, the Patient Monitor will display the pethysmogram.

To connect and attach the SpO2 finger probe to Aria:

1. Locate the SpO2 port on Aria’s left arm pit.
2. Connect the SpO2 probe to the SpO2 port.
3. Place the SpO2 probe on Aria.
Gastrointestinal System

Aria produces realistic bowel sounds. Auscultation of normal and abnormal bowel sounds can be performed with the StethoSym utilizing the RFID tags. For further information, see Using the StethoSym in this user guide.

Note: Feeding tube is not included.

Genitourinary System

Aria is configured for male and female genitalia, either of which allows for the insertion of a urinary catheter. The genitourinary system also provides for the excretion of urine.

The simulator allows for the insertion of a 10 Fr 3 ml balloon urinary catheter.

The genitourinary (GU) system must be primed prior to use.

IMPORTANT: Use only clear distilled water or distilled water tinted with food coloring inside the manikin. Administration of any other type of fluid is NOT supported and may damage the system.
Urinary Catheterization

Prior to catheterizing the simulator, the genitourinary (GU) system must be primed. See the Setup section of this user guide for instructions.

To perform catheterization, use the following items:

- 10 Fr 3 ml balloon urinary catheter
- Syringe to inflate catheter balloon
- Silicone oil spray (included)

Inserting a Urinary Catheter

Note: Before catheterization, see the Setup section of this user guide for instructions on how to prime the genitourinary (GU) system.

After the GU system has been primed, catheterize the simulator using a standard 10 Fr urinary catheter lubricated with silicone oil spray.

When the catheter is inserted, simulated urine begins to flow until the internal bladder is empty.

Note: The urinary catheter must be inserted approximately 2.5 inches (6.35 cm) for the female genitalia and 4.5 inches (11.43 cm) for the male genitalia to achieve urine flow.

Changing the Simulator’s Genitalia

Aria comes with male and female genitalia.

Note: Prop the manikin’s buttocks up with a pillow or folded sheet/towel to allow for easier access to the manikin's genitalia.
To remove the genitalia:

1. Gently pull the top tab up to unlatch it.

2. Gently pull the genital insert downward, about halfway until the bottom plug is visible.

3. With the bottom plug visible, grip the bottom of the genital insert and pull outward to remove it.
To change the genitilia:

1. Place the desired genital insert into position by flexing the bottom of the genitalia and directing it into the frame.
2. Push the genital insert into place until it fits snugly into the fittings.

Sounds

A variety of simulated sounds are available to enhance realism. Sounds are controlled through the instructor software.

To auscultate sounds on the Aria manikin, be sure to locate a stethoscope and set up the StethoSym prior to beginning a simulation.

Auscultated Sounds

Note: A patient must be running in the software for any sounds to be available. By default, **Normal** sounds are selected.

To change the sounds from normal, tap any one of the sounds on the **Type** drop-down menu.

To adjust the volume, tap and drag the **Volume** slider.

Sounds in specific/individual or all regions can be turned off using the ON/OFF toggle.

For more information on using these parameters, see the *Maestro for Aria User Guide*.

Heart, Lung, Bowel and Korotkoff Sounds

Heart sounds are synchronized with the cardiac cycle and lung sounds are independently synchronized with ventilation of the left and right lungs. Sounds can be adjusted by tapping the **Sounds** button on the Run screen in Maestro. When the Sounds panel appears, select one of the tabs: **Heart**, **Lungs**, or **Bowel**, or **Korotkoff**. Adjust all areas or isolate by changing the sound type per region, if applicable. Select the sounds from the **Type** drop-down menu. See the *Maestro for Aria User Guide* for complete details.

Speech

A variety of programmable vocal sounds are available. Select **Vocal Speech Sounds** or **Speech Sounds** from the Run Screen. A patient must be running in the Maestro software for the Speech sounds to work properly. The Vocal Speech is emitted immediately and plays continuously until turned off or another speech sound is selected. The Speech sounds contain predefined phrases and are arranged in Conversation and Symptom categories.
Using the StethoSym

StethoSym can only be used on manikin configurations that include RFID tags. For more information on configurations, see the Simulator Configurations section of this user guide.

Setting Up the StethoSym

To set up the stethosym:

1. Connect the StethoSym’s speaker module to the diaphragm of the stethoscope with the two elastic bands.

2. Pull back the lever on the StethoSym module to open the clamp and attach it to the tubing of the stethoscope.

Operating the StethoSym

To connect the StethoSym to the manikin:

1. Press the power button on the side of the StethoSym module.

 The unit powers on and the indicator light should be Green until it synchronizes with the manikin and then turns Blue. The indicator light flashes Red if the battery is low.
2. Place the StethoSym speaker module over a sound tag on the manikin for approximately 10 seconds. This ensures that StethoSym connects to the proper manikin. StethoSym displays a solid blue light when it is connected to the manikin.

Note: This step is only required when moving the StethoSym to a new manikin which it is not already paired to.

When a patient is running in Maestro, you can listen to any available physiologic sounds by placing the StethoSym in the proper location. To control the volume and specific sound played at a sound location, use the **Sounds** controls on Maestro.

3. To turn the StethoSym off, press the power button.

Note: The following diagram of the internal chest identifies the RFID tag locations for using the StethoSym.

Aria RFID Tag Locations

<table>
<thead>
<tr>
<th>Tag #</th>
<th>Location Sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heart: Pulmonary Valve</td>
</tr>
<tr>
<td>2</td>
<td>Heart: Aortic Valve</td>
</tr>
<tr>
<td>3</td>
<td>Heart: Mitral</td>
</tr>
<tr>
<td>4</td>
<td>Heart: Tricuspid</td>
</tr>
<tr>
<td>5</td>
<td>Lungs: Anterior - Left Upper Lobe</td>
</tr>
<tr>
<td>6</td>
<td>Lungs: Anterior - Right Upper Lobe</td>
</tr>
<tr>
<td>7</td>
<td>Lungs: Anterior - Left Lower Lobe</td>
</tr>
<tr>
<td>8</td>
<td>Lungs: Anterior - Right Lower Lobe</td>
</tr>
<tr>
<td>9</td>
<td>Bowel: Lower Left Quadrant</td>
</tr>
<tr>
<td>10</td>
<td>Bowel: Upper Left Quadrant</td>
</tr>
</tbody>
</table>
Using Aria

<table>
<thead>
<tr>
<th>Tag #</th>
<th>Location Sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Bowel: Lower Right Quadrant</td>
</tr>
<tr>
<td>12</td>
<td>Bowel: Upper Right Quadrant</td>
</tr>
<tr>
<td>13</td>
<td>Right Arm: Korotkoff Sound (not pictured)</td>
</tr>
<tr>
<td>16</td>
<td>Lungs: Posterior - Left Upper Lobe</td>
</tr>
<tr>
<td>17</td>
<td>Lungs: Posterior - Right Upper Lobe</td>
</tr>
<tr>
<td>18</td>
<td>Lungs: Posterior - Left Middle Lobe¥</td>
</tr>
<tr>
<td>19</td>
<td>Lungs: Posterior - Right Middle Lobe¥¥</td>
</tr>
<tr>
<td>20</td>
<td>Lungs: Posterior - Left Lower Lobe</td>
</tr>
<tr>
<td>21</td>
<td>Lungs: Posterior - Right Lower Lobe</td>
</tr>
<tr>
<td>24</td>
<td>Lungs: Anterior - Right Lateral Lobe**</td>
</tr>
<tr>
<td>25</td>
<td>Lungs: Anterior - Left Lateral Lobe*</td>
</tr>
</tbody>
</table>

* Controlled by the anterior Left Lower lung sound control

** Controlled by the anterior Right Lower lung sound control

¥ Controlled by the posterior Left Upper lung sound control

¥¥ Controlled by the posterior Right Upper lung sound control

Charging the StethoSym

To charge the StethoSym, use the included power supply and micro-USB cable. Refer to the table below for status light information.

<table>
<thead>
<tr>
<th>Light Color</th>
<th>Power Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>Unit is plugged into a power source and battery is charging. Orange light turns off when the unit is fully charged.</td>
</tr>
<tr>
<td>Green</td>
<td>Unit is on and fully charged.</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>Battery level is low and needs to be charged.</td>
</tr>
<tr>
<td>Blue</td>
<td>Unit is on and receiving signal from manikin.</td>
</tr>
</tbody>
</table>
Care and Maintenance

Maintaining the simulator requires careful treatment of electronic and mechanical components. Following the use of the simulator, make sure all components are properly handled and correctly removed or placed into storage.

Note: Do not attempt to open or repair any simulator components without authorization from CAE Customer Service or their representative. Doing so may void the warranty. Many hardware components within the simulator and Instructor Workstation are not user-serviceable. Contact CAE Healthcare Customer Service to address any hardware maintenance concerns.

General Simulator Care

- Avoid the use of writing instruments and sharp objects near the patient simulator to prevent tears or unattractive markings in or on the skin.

- A mild detergent and warm water will remove most marks and stains. Gently rub the soiled area with a soft cloth. **DO NOT** use abrasive soaps or pads.

- Lubricate airway adjuncts, urinary catheters, nasogastric tubes, and enema tubes with silicone spray prior to insertion. **DO NOT** use water-based lubricant.

- Prior to using moulage of any kind, and to make cleansing the simulator’s skin easier, lightly apply petroleum jelly to the simulator’s skin, followed by a light amount of talcum powder (unscented baby powder).

- If the IV sites have been used during simulation, remove the fluid as described in the breakdown procedure. Failure to drain and clean the systems may cause problems with the system.

- If the IM injection site(s) have been used during simulation, remove the fluid from the sponge inside the injection site pad as described in the breakdown procedure.
Breakdown

To ensure your simulator remains in good working condition, follow the CAE breakdown procedures below prior to storing.

Break down the Aria Simulator

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clean the Manikin.</td>
</tr>
<tr>
<td>2</td>
<td>Flush and Drain the Left Arm IV sites.</td>
</tr>
<tr>
<td>3</td>
<td>Maintain IM Injection Site.</td>
</tr>
<tr>
<td>4</td>
<td>Flush and Drain the Jugular, Tibial IO and Gastrostomy Sites.</td>
</tr>
<tr>
<td>5</td>
<td>Flush and Drain the Urinary System.</td>
</tr>
<tr>
<td>6</td>
<td>Flush and Drain the Chest Tube.</td>
</tr>
<tr>
<td>7</td>
<td>Flush and Drain the Bleeding System.</td>
</tr>
<tr>
<td>8</td>
<td>Power Off the Instructor Tablet.</td>
</tr>
<tr>
<td>9</td>
<td>Power Off the Manikin.</td>
</tr>
</tbody>
</table>

Step 1: Clean the Manikin

To clean the simulator, use a soft cloth and warm water with a mild detergent to wipe off any moulage materials on the manikin's skin. Gently rub the soiled area with a soft cloth to remove most marks and stains. **DO NOT** use solvents or abrasive pads.

Inspect the manikin for damage or puncture marks. If damage exists, contact CAE Healthcare Customer Service immediately for a repair. Prompt repair prevents expansion of the damaged area.

Step 2: Flush and Drain the Left Arm IV Sites

To flush the Antecubital and Dorsum of the left Hand IV sites:

1. Attach the IV tubing and empty IV bag to the fluid drain port located at the manikin's buttocks.

2. If non-clear distilled water was used to prime the site or infused:
 a. Remove the antecubital IV prime port cap and attach syringe filled with 50 ml of clear distilled water.
 b. Flush with clear distilled water until clear water exits from the drain port.
 c. Remove syringe and replace IV port cap.
 d. Repeat steps a through c for the left hand site.
To drain the Antecubital and Dorsum of the left Hand IV sites:

1. Fill a syringe with air and push air into the antecubital prime port and the Dorsum port until air exits from the drain port.
2. Ensure cap is on the antecubital IV prime port and the left hand port.
3. Connect a 50 ml syringe to the fluid drain port located at the manikin's buttocks.
4. Draw back on the syringe to remove any fluids.

Step 3: Maintain IM Injection Site

If the simulation included use of IM injection equipment, perform the following steps prior to storing the manikin:

1. Remove the pad from the injection site.

Removing the IM Pad
2. Remove the sponge from inside the pad.

3. Squeeze all the fluid from the sponge and let air dry.

4. When dry, replace the sponge back inside pad.

5. Replace the pad into the injection site.
Step 4: Flush and Drain the Jugular, Tibial IO and Gastrostomy Sites

To flush and drain the Jugular, Tibial IO and Gastrostomy sites:

1. Attach IV tubing and empty IV bag to fluid drain port located at the manikin's buttocks.

2. If non-clear distilled water was infused:
 a. Remove infusing fluids from the site and attach syringe filled with 50 ml of clear distilled water.
 b. Flush each site used with clear distilled water until clear water exits from the drain port.
 c. Remove syringe, discard any fluid, fill syringe with air and push air into each site used until air exits from the drain port.
 d. Remove syringe.
 e. Replace cap on the jugular site, remove IO access needle from the IO site, remove MicKey connection tube from the gastrostomy site.
Step 5: Flush and Drain the Urinary System

To flush and drain the urinary system:

1. Insert catheter in the urethra approximately 2.5 inches (6.35 cm) for the female genitalia or 4.5 inches (11.43 cm) for the male genitalia.
2. Attach the urinary module assembly filling tool with clear distilled water.
3. Flush until clear water comes out of the catheter.
4. Fill tool with air and flush until no water can be seen entering the catheter.
5. Remove the catheter.

Step 6: Flush and Drain the Chest Tube

To flush the chest tube:

1. If red food coloring was used, rinse out the external bleeding tank.
2. Fill the tank with distilled water.
3. Insert the chest catheter in the chest tube haptic and place the catheter drain over a basin.
4. Run a chest tube SCE in the Masestro software or turn on the Flush command located on the maintenance tab in the Maestro software.
5. Run until all clean distilled water is pushed through the circuit.

To drain the chest tube:

1. When the external bleed tank empties, air will be pushed through the circuit.
2. Allow air to pass, removing all fluid.
3. Stop the chest tube SCE simulation in the Masestro software or turn off the Flush command located on the maintenance tab in the Maestro software.

Step 7: Flush and Drain the Bleeding System

Note: These instructions pertain only to an Aria manikin equipped with the bleeding system option.

To flush the bleeding system:

1. If red food coloring was used, rinse out the external bleeding tank.
2. Fill the tank with distilled water.
3. Connect the wound umbiical to the upper or lower bleeding port and place the hose end into a basin.
4. Run a Bleeding SCE simulation in Maestro or turn on the **Flush** command located on the maintenance tab in Maestro.

5. Continue to run the SCE until all clean distilled water is pushed through the circuit.

6. Repeat steps 3 through 5 for the other bleeding port.

To drain the bleeding system:

1. When the external bleed tank empties, air will be pushed through the circuit.

2. Allow the air to pass, removing all fluid, one port at a time.

3. Stop the SCE simulation in Maestro or turn off the **Flush** command located on the maintenance tab in Maestro.

Step 8: Power off the Instructor Tablet

To power off the Surface Go 2 instructor tablet:

1. Tap the white back arrow at the top left of the Maestro run screen to exit the current simulation session.

2. Tap **Stop and Exit**.

3. Tap the X in the upper-right corner of the screen to exit Maestro.

4. The tablet desktop screen appears.

5. Tap the **Start** menu icon in the lower-left corner of the desktop screen.

6. Tap **Power** and then tap **Shut Down**.

Step 9: Power Off the Manikin

To power off the manikin:

1. Press and release the Power button located on the bottom of the manikin’s right foot.

The LED will flash Green for approximately 45 seconds, then turn off when the unit has completely powered down. After the unit is powered down, the LED will blink Blue approximately every 30 seconds indicating the unit is in low power mode.

Note: The power button will flash blue every 30 seconds to indicate the low power mode is enabled. If the button no longer flashes, the battery has been turned off and external power will need to be plugged in to charge and operate the system.
Maintenance

Simple care and maintenance help to ensure that Aria stays in good working condition. Many problems are caused by inadequate or improper maintenance. Perform a thorough check of the various components each time the simulator is used. Failure to follow these guidelines can lead to damage not covered by warranty.

Airway Inspection

Aria is equipped with an anatomically accurate airway that supports the practice of difficult airway management techniques. In the process of performing these techniques improperly or aggressively, the upper airway can be damaged.

Because damage can occur, occasional visual inspection of the airway is recommended. Using the light of a laryngoscope blade or a flashlight, visually examine the airway. While tears in the upper airway resulting from intubation may be obvious, needle holes in the lower trachea resulting from techniques such as transtracheal jet ventilation may not be readily apparent.

If damage to the airway is found, contact CAE Customer Service.

Storage

Important: Do not attempt to open or repair any simulator components. Doing so may void the warranty. If damage exists, contact CAE Customer Service immediately for a repair. Prompt repair prevents expansion of the damaged area.

Prior to storing the product:

- Make certain all fluids have been flushed and drained from the manikin.
- Charge the manikin batteries.

Store all equipment and the manikin:

- Indoors
- In a dry location
- Protected from dust
- Away from direct sunlight
- Within the temperature ranges listed in the *Specifications* section of this user guide.

Refer to the following short-term and long-term storage instructions for additional details.
Short-Term Storage

Follow these guidelines for short-term storage (less than two months):

- Charge the manikin to 100% in order to increase shelf life.
- Store the manikin on a work table and cover with a sheet.
- Keep the manikin and battery in a cool location to extend the life and capacity of the battery.
- For battery longevity, adhere to this storage guidance:
 - Keep the simulator and battery in a cool location to extend the life and capacity of the battery both in storage and during use.
Care and Maintenance

Long-Term Storage

Follow these guidelines for long-term storage (up to twelve months):

• Charge the manikin to 100% in order to increase shelf-life. Follow the Battery Safety Information detailed in this User Guide.

• Store the manikin in the container the simulator arrived in and refer to the Unpack and Repack Manual (this document also was included when the simulator was shipped). Aria supports storage up to twelve months. After that period of time, the user will need to charge the simulator again.

• Do not stand the container on its side with the manikin stored inside for long periods of time.

Note: Prior to using the manikin, ensure it reaches room temperature.
APPENDIX A - RECOMMENDED CLINICAL SUPPLIES

The following clinical supply sizes are recommended for use with Aria. Other sizes may cause damage to Aria and should not be used.

<table>
<thead>
<tr>
<th>Recommended Clinical Supply Sizes</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary Catheter</td>
<td>10 Fr, 3ml balloon</td>
</tr>
<tr>
<td>Nasogastric Tube (NGT)</td>
<td>10 Fr</td>
</tr>
<tr>
<td>Laryngoscope Blade Miller</td>
<td>#2</td>
</tr>
<tr>
<td>Laryngoscope Blade Mac</td>
<td>#3</td>
</tr>
<tr>
<td>Endotracheal (ETT)</td>
<td>6.0 mm cuffed</td>
</tr>
<tr>
<td>Manual Resuscitator</td>
<td>Child</td>
</tr>
<tr>
<td>Face Mask</td>
<td>Small Adult/Youth</td>
</tr>
<tr>
<td>Laryngeal Mask Airway (LMA)</td>
<td>#2.5</td>
</tr>
<tr>
<td>King Airway</td>
<td>#3</td>
</tr>
<tr>
<td>i-gel Supraglottic Airway</td>
<td>#2.5</td>
</tr>
<tr>
<td>Oropharyngeal Airway</td>
<td>2, 70 mm</td>
</tr>
<tr>
<td>Nasaopharyngeal Airway</td>
<td>24 Fr, 6 mm</td>
</tr>
<tr>
<td>Tracheostomy Tube</td>
<td>5.0 cuffed</td>
</tr>
<tr>
<td>Peripheral IV Cannula</td>
<td>22 g</td>
</tr>
<tr>
<td>Chest Tube</td>
<td>20 Fr</td>
</tr>
<tr>
<td>Needle Decompression</td>
<td>14 or 16 ga., 1.5 inch needle</td>
</tr>
<tr>
<td>IO Needle</td>
<td>15 ga. adjustable depth</td>
</tr>
<tr>
<td>BP Cuff</td>
<td>Pediatric</td>
</tr>
<tr>
<td>Medical Eye Pen Light</td>
<td>Standard</td>
</tr>
</tbody>
</table>
For more information about CAE products, contact your regional sales manager or the CAE distributor in your country, or visit caehealthcare.com.
Tel +1 941-377-5562 or 866-233-6384

For customer service, please contact CAE.

Customer Service Headquarters - United States
Monday - Friday from 7:00 a.m. to 6:00 p.m. ET
Phone 1-866-462-7920
Email: srqcustomerservice@cae.com

Customer Service - Canada
Monday - Friday from 8:00 a.m. to 5:00 p.m. ET
Phone 1-877-223-6273
Email: can.service@cae.com

Customer Service - Europe, Middle East, and Africa
Monday - Friday from 8:00 a.m. to 5:00 p.m. CET
Phone +49 (0) 6131 4950354
Email: international.service@cae.com

Customer Service - United Kingdom and Ireland
Monday - Friday from 9:00 a.m. to 5:00 p.m. GMT
Phone +44 (0)800-917-1851
Email: uk.service@cae.com

Customer Service - Latin America
Monday - Friday from 9:00 a.m. to 5:00 p.m. BRT/BRST
Phone +55 11 5069-1510
Email: la.service@cae.com

Customer Service - Asia Pacific
Monday - Friday from 8:00 a.m. to 5:00 p.m. CET
Phone +49 (0) 6131 4950354
Email: ap.service@cae.com

©2021 CAE